Windows. Вирусы. Ноутбуки. Интернет. Office. Утилиты. Драйверы

Принципиальная схема блока фильтров и предусилителя ниже на рисунке. Фильтры настроены на следующие частоты: 32Гц, 63Гц, 125Гц, 250Гц, 500Гц, 1кГц, 2кГц, 4кГц, 8кГц, 16кГц.


Печатная плата. Изготавливалась самостоятельно при помощи фоторезиста.


Рекомендации по подбору емкостей- номиналы емкостей лучше подбирать с помощью LCR метра (я пользовался E7-22) нестандартные номиналы получал параллельно или последовательно собирая из стандартного ряда.

Принципиальная схема линейки индикаторов.

Печатная плата в DIP и SMD вариантах все есть в архиве.Платы заказывал на производстве так как дома такие размеры было проблематично сделать (размер в DIP 320х50).
В качестве диода можно использовать любой быстродействующий диод Шоттки. Сопротивление резисторов на светодиоды зависит от типа используемых светодиодов, (надо рассчитать по току), можно использовать любые другие светодиоды с пересчетом или переделкой схемы. ДА есть еще одно замечание- это потребление одной линейки, при задействовании все 40 светодиодов линейка потребляет 40*0,02А=0,8А а все 10 линеек будут кушать при полном задействовании светодиодов 8А!! не забудьте подобрать соответствующий блок питания. Если будете использовать покупной импульсный БП с несколькими входами как правило это +/-12В, +5В, то есть один нюанс с которым я столкнулся, если одноканальные Импульсные БП в большинстве не требуют нагрузку для запуска, то многоканальные требуют, т.е. необходимо нагрузить все каналы чтобы БП запустился.
Настройка.
Настройка заключается в установке равенства чувствительности всех каналов. Нужен генератор НЧ и низкочастотный милливольтметр. На генераторе устанавливают последовательно частоты 32 Гц, 63 Гц, 125 Гц, 250 Гц. 500 Гц, 1 кГц, 2 кГц, 4 кГц, 8 кГц и 16 кГц. Частоты поочередно подают на вход прибора. При этом параллельно выходу генератора НЧ должен быть подключен милливольтметр, по его показаниям нужно следить за тем, чтобы величины напряжения ЗЧ, подаваемые с ГНЧ на всех частотах были одинаковыми (при необходимости регулировать регулятором уровня выхода ГНЧ). Выставляем R42 предварительного усилителя в среднее положение и начиная с частоты 32 Гц на ГНЧ устанавливают такой уровень выходного напряжения при котором в среднем положении R2(блока фильтра 32Гц) горит средний светодиод индикаторной шкалы. Запоминаете этот уровень выходного напряжения ГНЧ. Затем повышаете частоту до 64 Гц. Устанавливаете такой же уровень НЧ с выхода ГНЧ (смотря по милливольтметру), и регулируете R*в фильтре 63Гц так чтобы горел средний светодиод шкалы 63 Гц.
Аналогичные операции проделать на всех других частотах. Предварительно можно точнее установить средние частоты полос, определив среднюю частоту каждого фильтра перестройкой частоты ГНЧ в некоторых пределах относительно указанной частоты на схеме. Затем, если есть существенное отличие, отрегулировать частоту соответствующим изменением емкостей конденсаторов.

Несколько фото процесса изготовления




Как вы думаете, что делают девушки, когда собираются вместе? Идут по магазинам, фотографируются, ходят по салонам красоты? Да, так и есть, но так делают далеко не все. В данной статье пойдёт речь о том, как две девушки решили собрать радиоэлектронное устройство своими руками.

Почему именно анализатор-визуализатор спектра?

Ведь программных решений данной задачи довольно много и вариантов аппаратной реализации так же немало. Во-первых, очень хотелось поработать с большим количеством светодиодов (т.к. мы уже собирали led-куб, каждый для себя, но в небольших размерах), во-вторых, применить на практике полученные знания по цифровой обработке сигналов и, в-третьих, в очередной раз попрактиковаться в работе с паяльником.

Разработка устройства

Т.к. брать готовое решение и делать строго по инструкции – это скучно и неинтересно, поэтому мы решили разрабатывать схему сами, лишь немного опираясь на уже созданные устройства.

В качестве дисплея выбрали светодиодную матрицу 8х32. Можно было использоваться готовые led-матрицы 8х8 и собирать из них, но мы решили не отказывать себе в удовольствии посидеть вечерком с паяльником, и поэтому собирали дисплей сами из светодиодов.

Для управления дисплеем мы не изобретали велосипед и использовали схему управления с динамической индикацией. Т.е. выбрали один столбец, зажгли его, остальные столбцы в этот момент погасили, затем выбирали следующий, зажгли его, остальные погасили и т.д. Ввиду того, что человеческий глаз не идеален, мы можем наблюдать статическую картинку на дисплее.
Пойдя по пути наименьшего сопротивления было решено, что все вычисления разумно будет перенести на контроллер Arduino.

Включение той или иной строки в столбце осуществляется с помощью открытия соответствующего ключа. Для уменьшения количества выходных пинов контроллера, выбор столбца происходит через дешифраторы (таким образом, мы можем сократить количество управляющих линий до 5).

В качестве интерфейса подключения к компьютеру (или другому устройству, способному передавать аудио сигнал) был выбран разъём TRS (mini-jack 3.5 mm).

Сборка устройства

Сборку устройства начинаем с того, что делаем макет лицевой панели устройства.

Материалом для лицевой панели был выбран чёрный пластик толщиной 5мм (т.к. диаметр линзы диода также 5мм). По разработанному макету размечаем, вырезаем лицевую панель под необходимый размер и просверливаем отверстия в пластике под светодиоды.

Таким образом получаем готовую лицевую панель, на которой можно уже собирать дисплей.

В качестве светодиодов для матрицы были использованы двухцветные (красный-зелёный) с общим катодом GNL-5019UEUGC. Перед началом сборки матрицы, руководствуясь правилом “лишний контроль не повредит” все светодиоды, а именно 270 шт. (брали с запасом на всякий случай), были проверены на работоспособность (для этого было собрано тестирующее устройство, включающее в себя разъём, резистор 200Ом и источник питания на 5В).

Дальше разгибаем светодиоды следующим образом. Аноды красного и зеленого диодов отгибаем в одну сторону (вправо), катод отгибаем в другую сторону, при этом следим, чтобы катод был ниже чем аноды. И затем под 90° загибаем катод вниз.

Сборку матрицы начинаем с правого нижнего угла, сборку производим по столбцам.

Вспоминая про правило “лишний контроль не повредит”, после одного-двух спаянных столбцов, проверяем работоспособность.

Готовая матрица выглядит следующим образом.

Вид сзади:

По разработанной схеме паяем схему управления строками и столбцами, распаиваем шлейфы и место под Arduino.

Было решено так же выводить не только амплитудно-частотны, но и фазо-частотный спектр, а также выбирать количества отсчетов для отображения (32,16,8,4). Для этого были добавлены 4 переключателя: один на выбор типа спектра, два на выбор количества отсчётов, и один на включение и выключение устройства.

Написание программы

В очередной раз руководствуемся нашим правилом и убеждаемся, что наш дисплей полностью в рабочем состоянии. Для этого пишем простую программу, которая полностью зажигает все светодиоды на дисплее. Естественно, по закону Мёрфи, нескольким светодиодам не хватало тока, и их необходимо было заменить.

Удостоверившись, что всё работает, мы приступили к написанию основного программного кода. Он состоит из трёх частей: инициализация необходимых переменных и считывание данных, получение спектра сигнала при помощи быстрого преобразования Фурье, вывод полученного спектра с необходимым форматированием на дисплей.

Сборка конечного устройства

В конце мы имеем лицевую панель, а под ней куча проводов, которые необходимо чем-то закрыть, да и переключатели нужно на чём-то закрепить. До этого были мысли сделать корпус из остатков пластика, но мы не вполне представляли, как это будет конкретно выглядеть и как это сделать. Решение проблемы пришло довольно неожиданно. Прогулявшись по строительному магазину, мы обнаружили пластиковый цветочный горшок, который на удивление идеально подошёл по размеру.

Дело оставалось за малым, разметить отверстия под разъёмы, кабели и переключатели, а также вырезать две боковые панели из пластика.

В итоге, собрав всё воедино, подключив устройство к компьютеру мы получили следующее:

Амплитудно-частотный спектр (32 отсчёта):

Амплитудно-частотный спектр (16 отсчётов):

Амплитудно-частотный спектр (8 отсчётов):

Амплитудно-частотный спектр (4 отсчёта):

Фазо-частотный спектр:

Вид задней панели:

Видео работы устройства

Для большей наглядности видео снималось в темноте. На видео устройство выводит амплитудно-частотный спектр, а затем на 7 секунде переключаем его в режим фазо-частотного спектра.

Список необходимых элементов

  1. Светодиоды GNL-5019UEUGC – 256 шт. (Для дисплея)
  2. Транзисторы n-p-n KT863A – 8 шт. (Для управления строками)
  3. Транзисторы p-n-p С32740 – 32 шт. (Для управления столбцами)
  4. Резисторы 1кОм – 32 шт. (Для ограничения тока базы p-n-p транзисторов)
  5. Дешифраторы 3/8 IN74AC138 – 4 шт. (Для выбора столбца)
  6. Дешифраторы 2/4 IN74AC139 – 1 шт. (Для каскадирования дешифраторов)
  7. Монтажная плата 5х10см – 2 шт.
  8. Шлейфы
  9. Arduino Pro micro – 1 шт.
  10. Разъём mini-jack 3.5мм – 1 шт.
  11. Переключатель – 4 шт.
  12. Чёрный пластик 720*490*5 мм – 1 лист. (Для лицевой панели)
  13. Горшок цветочный чёрный 550*200*150 мм – 1 шт. (Для корпуса)

В статье рассматривается конструкция простого анализатора спектра (0 - 10 кГц) на микроконтроллере AVR . В качестве устройства отображения используется двухстрочный символьный ЖК индикатор. Основным моментом при реализации данного проекта является не аппаратная часть, а программная, точнее реализация дискретного преобразования Фурье (ДПФ) на 8-разрядном микроконтроллере. Сразу следует отметить, что автор не является экспертом в этой области и поэтому начал с основ - с простого дискретного преобразования Фурье. Алгоритм быстрого преобразования Фурье является не только быстрым, но и достаточно сложным.

Дискретное преобразование Фурье (в англоязычной литературе DFT, Discrete Fourier Transform) - это одно из преобразований Фурье, широко применяемых в алгоритмах цифровой обработки сигналов (его модификации применяются в сжатии звука в MP3, сжатии изображений в JPEG и др.), а также в других областях, связанных с анализом частот в дискретном (к примеру, оцифрованном аналоговом) сигнале. Дискретное преобразование Фурье требует в качестве входа дискретную функцию. Такие функции часто создаются путем дискретизации (выборки значений из непрерывных функций).

Принципиальная схема анализатора спектра звукового сигнала очень проста и условно ее можно разделить на цифровую часть и аналоговую.

Цифровая часть образована микроконтроллером и подключенным к нему ЖК индикатором. Микроконтроллер тактируется от кварцевого резонатора 16 МГц, в качестве опорного напряжения для АЦП микроконтроллера используется напряжение питания +5 В.
Шина данных ЖК индикатора подключена к порту C микроконтроллера (линии ввода/вывода PC0-PC3), шина управления подключена к порту D(PD5, PD6) микроконтроллера. Индикатор работает в 4-битном режиме. Переменный резистор номиналом 4.7 кОм используется для регулировки контрастности. Для работы с индикатором были созданы пользовательские символы для отображения 8 горизонтальных столбиков анализатора, эти пользовательские символы занимают все 64 Байта ОЗУ ЖК индикатора.

Микроконтроллер работает от внешнего кварцевого резонатора 16 МГц.

Аналоговая часть устройства - это самая важная часть и представляет собой предварительный усилитель сигнала электретного микрофона, выход которого подключается к каналу ADC0 встроенного в микроконтроллер АЦП. Уровень нуля на входе АЦП нам необходимо установить равным точно половине опорного напряжения, т.е. 2.5 В. В этом случае мы сможем использовать положительную и отрицательную полуволну сигнала, но его амплитуда не должна превышать установленный предел, т.е. коэффициент усиления должен быть точно настроен для предотвращения перегрузки. Всем вышеуказанным условиям отвечает распространенная микросхема низкопотребляющего операционного усилителя .

Алгоритм ДПФ несколько медленнее в сравнении с быстрым преобразованием Фурье. Но наш анализатор спектра не требует высокой скорости, и если он способен обеспечить скорость обновления около 30 кадров в секунду, этого будет более чем достаточно для визуализации спектра звукового сигнала. В любом случае, в нашем варианте возможно достичь скорости 100 кадров в секунду, но это уже слишком высокое значение параметра для двухстрочного символьного ЖК индикатора и оно не рекомендуется. Частота дискретизации равна 20 кГц для 32 точечного дискретного преобразования Фурье и поскольку результат преобразования симметричен, нам нужно использовать только первую половину, т.е. первые 16 результатов. Следовательно, мы можем отображать частотный спектр в диапазоне до 10 кГц и разрешение анализатора составляет 10 кГц/16 = 625 Гц.

Автором конструкции были предприняты попытки увеличения скорости вычисления ДПФ. Если это преобразование имеет N точек, то мы должны найти N2/2 значений синуса и косинуса. Для нашего 32 точечного преобразования необходимо найти 512 значений синуса и косинуса. Но, прежде чем найти их нам необходимо вычислить угол (градусы), что займет некторое процессорное время, поэтому было решено использовать для этих вычислений таблицы значений. При расчетах в программе микроконтроллера не используются вычисления с плавающей точкой и числа двойной точности (double), так как это займет больше времени на обработку на 8-разрядном микроконтроллере. Вместо этого значения в таблицах поиска используются 16-разрядные данные целочисленного типа (integer), умноженные на 10000. Затем после выполнения преобразования результаты делятся на 10000. При таком подходе имеется возможность выполнять 120 32-точечных преобразований в секунду, что более чем достаточно для нашего устройства.

Давно мечтал собрать графический анализатор спектра, но останавливало обилие компонентов в схеме, подбор элементов фильтров и т.п. И тут мне попался польский журнал с описанием цифрового анализатора, сердцем которого является микроконтроллер. Схема очень простая, в ней отсутствуют те фильтры, которые я так не хотел собирать, подбирать для них компоненты, настраивать. Всё это возложено на микроконтроллер. К тому же, этот анализатор имеет несколько режимов работы! Что сильно бы усложнило схему на дискретных элементах.

Анализатор имеет 4 режима индикации: Линия с индикацией пиков и без, и "точка", так же с индикацией пиков и без.

Технические характеристики :

  • Индикация частот: 31Hz, 62Hz, 125Hz, 250Hz, 500Hz, 1kHz, 2kHz, 4kHz, 8kHz, 16kHz;
  • Размер матрицы: 10х10;
  • Режимы: точка, линия, пики;
  • Напряжение питания: 12V;
  • Потребляемая мощность: Зависит от используемых светодиодов в матрице , основная плата потребляет около 20мА.

Индикатор состоит из двух частей, основного блока и диодной матрицы.


Основной блок построен на микроконтроллере ATmega8 , дешифраторе К176ИД1 (зарубежный аналог CD4028 ) и входного усилителя-ограничителя, выполненном на операционном усилителе TL071 . Кварцевый резонатор можно применить на частоту от 16-20мГц.

Пробный вариант я спаял за несколько часов на макетной плате:









Фьюзы в Algorithm Builder:

Фьюзы в PonyProg:


При прошивке микроконтроллера необходимо быть предельно аккуратным при выставлении фьюзов, так как неправильно установленные "птички" могут заблокировать микроконтроллер и его перепрошивка потребует программатор, в разы сложнее данного анализатора.

Собрал схему, прошил микроконтроллер, подключил питание и подал на вход звуковой сигнал. Устройство заработало сразу, без настроек и наладки. Эта коннструкция меня очень порадовала.

Данный проект является логическим продолжением проекта "Темброблок с микроконтроллерным управлением на TDA8425". Для расширения функционала я предлагаю вам собрать простой спектроанализатор звука. Анализатор спектра обрабатывает сигнал и на светодиодных шкалах показывает его интенсивность в определенных частотных диапазонах. Итак, ниже схема устройства.

Сердцем устройства является микроконтроллер фирмы MICROCHIP. Это новый представитель семейства 8-ми выводных Flash-микроконтроллеров. Фирма MICROCHIP продолжает разработку и производство передовых продуктов, предоставляющих пользователю большую функциональность и надежность. Контроллер PIC12F675 объединил все преимущества архитектуры микроконтроллеров PICmicro и гибкость Flash программной памяти. При низкой цене и малых размерах этот контроллер обеспечивают функциональность и удобство использования, которые были недоступны ранее.

Аудио сигнал подается на вход микросхемы - симиполосный фильтр японской корпорации ROHM. BA3834F имеет семь полосовых фильтров: 68 Гц, 170 Гц, 420 Гц, 1000 Гц, 2400 Гц, 5900 Гц, 14400 Гц. Выбор соответствующего фильтра осуществляет микроконтроллер PIC12F675.

Выходной сигнал с каждого полосового фильтра оцифровывается микроконтроллером и передается на микросхемы-драйверы (последовательный регистр сдвига с выходной блокировкой). В свою очередь, комбинация сигналов на 74HC595 включает соответствующие светодиоды. Светодиоды сгруппированы в матрицу из 7 столбцов "X" и 16 строк "Y" с общим анодом. Всего 112 светодиодов.

Спектроанализатор конструктивно собран на двух платах - управления и индикации. Ниже рисунок и фото платы управления.


Рисунки печатных плат односторонние; изготавливаются любым доступным способом, например ЛУТ. Обратите внимание - микросхема BA3834F в корпусе SOP18. Она смонтирована со стороны дорожек способом поверхностного монтажа. Далее рисунок и фото платы индикации.

Аноды светодиодов соединены между собой над поверхностью платы и подпаяны к контактным площадкам. Для более удобного соединения были использованы штыревые разъемы типа PLS (однорядные с шагом 2,54 мм); соответственно, для кабеля понадобятся гнезда с контактами типа BLS (однорядные с шагом 2,54 мм) и кримпер 6PK-301U (клещи обжимные) для заделки разъемов на кабель.

Если заметили ошибку, выделите фрагмент текста и нажмите Ctrl+Enter
ПОДЕЛИТЬСЯ: