Windows. Вирусы. Ноутбуки. Интернет. Office. Утилиты. Драйверы

Люди уже давно научились общаться на расстоянии. В древности с вестями посылали гонца, позже писали письма. Теперь, чтобы сказать далёкому другу пару слов, можно просто позвонить ему. Главное иметь при себе сотовый телефон. Но как они соединяются между собой, если у них даже нет проводов? В этом рассказе я расскажу вам как работает телефон.

Что это такое?

Мобильный телефон больше похож на рацию, чем на обычный проводнойтелефон. Для передачи сигнала используются радиоволны.

Разница в том, что рации подключены к одной антенне, и могут соединяться, лишь поймав сигнал от неё. Сотовые телефоны не привязаны к конкретной станции. Во время передвижения они подключаются к той антенне, от которой поступает самый сильный сигнал, поэтому мы можем пользоваться связью практически во всем мире, не меняя сим-карту. Антенны, или базовые станции, построены по всему миру, они прячутся в рекламных щитах, часах, столбах и даже в деревьях. Каждая из них отвечает за свою зону, имеющую форму шестиугольника. На схемах эти граничащие друг с другом территории напоминают пчелиные соты. Отсюда и название - сотовая связь.

Кто был первым?

Как вы думаете, кто самым первым поговорил по мобильному телефону? Разумеется, что это был сотрудник компании Motorola, которая их выпустила. В 1973 году, находясь на одной из улиц Нью-Йорка, он позвонил и похвастался звонком с необычного в то время телефона своему главному конкуренту. Этот телефон стал прототипом первого мобильника, поступившего на прилавки магазинов спустя 10 лет.

Чтобы телефон заработал, нужно вставить в него сим-карту. На ней записана информация об абоненте, то есть о человеке, который ею пользуется. Мобильный телефон начинает проверять все доступные ему частоты, их около 160. Шесть лучших сигналов записываются на сим-карту, это и есть сигналы именно вашей сети.

После того как вы набрали номер вашего приятеля, ваш телефон передает информацию о вас на антенну с самым мощным сигналом. Ваш оператор (например, МТС или Билайн) узнаёт вас, находит свободный канал, на котором может происходить ваш разговор, и соединяет вас. Все это занимает всего несколько секунд.

Сам разговор - это достаточно сложный технический процесс. Наш голос разбивается на отрезки длительностью 20 миллисекунд и преобразовывается в цифровой формат, затем кодируется специальной системой. Зашифрованные сигналы обрабатываются ещё раз, чтобы убрать посторонний шум.

Сейчас сотовый телефон служит не только для разговоров. В одном маленьком устройстве умещается такие простые механизмы как простые часы, будильник, калькулятор, календарь, фонарик, так и сложные фотоаппарат, выход в интернет, плеер и многое другое.

В теоретической части мы не будем углубляться в историю создания сотовой связи, о её основателях, хронологию стандартов и т.д. Кому это интересно – материала предостаточно как в печатных изданиях, так и в сети интернет.

Рассмотрим, что же из себя представляет мобильный (сотовый) телефон.

На рисунке очень упрощённо показан принцип работы:

Рис.1 Принцип работы сотового телефона

Сотовый телефон – это приёмо-передатчик, работающий на одной из частот в диапазоне 850МГц, 900МГц, 1800МГц, 1900МГц. Причём приём и передача разнесены по частотам.

Система GSM состоит из 3-х основных компонентов, таких как:

Подсистема базовых станций (BSS – Base Station Subsystem);

Подсистема переключения/коммутации (NSS –NetworkSwitchingSubsystem);

Центр управления и обслуживания (OMC – Operation and Maintenance Centre);

В двух словах работает это так:

Сотовый (мобильный) телефон взаимодействует с сетью базовых станций (БС). Вышки БС обычно устанавливают либо на своих наземных мачтах, либо на крышах домов или других сооружений, или же на арендованных уже существующих вышках всяческих ретрансляторов радио/ТВ и т.п., а также на высотных трубах котелен и других промышленных сооружений.

Телефон после включения и всё остальное время мониторит (прослушивает, сканирует) эфир на наличие GSM-сигнала своей базовой станции. Сигнал своей сети телефон определяет по специальному идентификатору. Если таковой имеется (телефон находится в зоне покрытия сети), то телефон выбирает лучшую по уровню сигнала частоту и на этой частоте посылает БС запрос нарегистрацию в сети.

Процесс регистрации по сути является процессом аутентификации (авторизации). Его суть заключается в том, что каждая SIM-карта, вставленная в телефон, имеет свои уникальные идентификаторы IMSI (International Mobile Subscriber Identity) и Ki (Key for Identification). Эти самые IMSI и Ki заносятся в базу центра аутентификации (AuC) при поступлении изготовленных SIM-карт оператору связи. При регистрации телефона в сети идентификаторы передаются БС, а именно AuC. Дальше AuC (центр идентификации) передаёт телефону некоторое случайное число, которое является ключом для выполнения вычислений по специальному алгоритму. Это вычисление происходит одновременно в мобильном телефоне и AuC, после чего оба результата сравниваются. Если они совпадают, то SIM-карта признаётся подлинной и телефон регистрируется в сети.

Для телефона же идентификатором в сети является его уникальный номер IMEI (International Mobile Equipment Identity). Этот номер обычно состоит из 15 цифр в десятичном представлении. Например 35366300/758647/0. Первые восемь цифр описывают модель телефона и его происхождение. Оставшиеся – серийный номер телефона и контрольное число.

Данный номер хранится в энергонезависимой памяти телефона. В устаревших моделях этот номер можно сменить с помощью специального программного обеспечения (ПО) и соответствующего программатора (иногда и дата-кабеля), а в современных телефонах он дублируется. Один экземпляр номера хранится в области памяти, которую можно программировать, а дубликат – в зоне памяти OTP (One Time Programming), которая программируется производителем один раз и не имеет возможности перепрограммирования.

Так вот, если даже изменить номер в первой области памяти, то телефон, при включении, сравнивает данные обеих областей памяти, и, если обнаруживаются разные номера IMEI – телефон блокируется. Для чего всё это менять, спросите вы? На самом деле законодательство большинства стран запрещает это делать. Телефон по номеру IMEI отслеживается в сети. Соответственно при краже телефона его можно отследить и изъять. А если успеть изменить этот номер на любой другой (рабочий), то шансы найти телефон сводятся к нулю. Этими вопросами занимаются спецслужбы при соответствующей помощи оператора сети и т.д. Поэтому углубляться в эту тему не стану. Нас интересует чисто технический момент смены номера IMEI.

Дело в том, что при определённых обстоятельствах данный номер может повредиться в результате сбоя ПО или неправильного его обновления и тогда телефон абсолютно не пригоден для эксплуатации. Вот тут на помощь и приходят все средства, чтобы восстановить IMEI и работоспособность аппарата. Подробнее этот момент будет рассмотрен в разделе программного ремонта телефона.

Теперь кратенько о передаче голоса от абонента к абоненту в стандарте GSM. На самом деле это технически очень сложный процесс, который абсолютно отличается от привычной передачи голоса по аналоговым сетям как, например, домашний проводной/радио телефон. Чем-то отдалённо похожи цифровые DECT-радиотелефоны, но реализация всё равно другая.

Дело в том, что голос абонента, прежде чем будет передан в эфир, подвергается множеству преобразований. Аналоговый сигнал разбивается на отрезки длительностью 20мс, после чего преобразовывается в цифровой, после чего кодируется путём применения алгоритмов шифрования с т.н. открытым ключом – система EFR (Enhanced Full Rate - усовершенствованная система кодирования речи, разработанная финской компанией Nokia).

Все сигналы кодека обрабатываются очень полезным алгоритмом на основе принципа DTX(Discontinuous Transmission) –прерывистой передачи речи. Его полезность заключается в том, что он управляет передатчиком телефона, включая его только в том момент, когда начинается произношение речи и отключает в паузах между разговором. Всё это достигается с помощью включенного в кодек VAD (Voice Activated Detector) –детектор активности речи.

У принимаемого абонента все преобразования происходят в обратном порядке.

Многие ли из нас задумываются, что происходит после того, как мы нажимаем кнопку вызова на мобильном телефоне? Как работают сотовые сети ?

Скорее всего, нет. Чаще всего мы набираем федеральный номер собеседника на автомате, как правило, по делу, поэтому что там и как устроено нас не интересует в конкретный момент времени. А ведь это удивительные вещи. Как можно позвонить человеку, находящемуся в горах или посреди океана? Почему во время разговора мы можем плохо слышать друг друга, а то и вовсе прерваться. Наша статья попробует пролить свет на принцип работы сотовой связи.

Итак, большая часть плотно заселенной территории России, покрыта так называемыми БС, что без сокращения именуются Базовыми Станциями. Многие могли обращать на них свое внимание, путешествуя между городами. В открытом поле, Базовые станции больше похожи на вышки, которые имеют красный и белый цвет. А вот в городе такие БС продуманно размещены на крышах нежилых высоток. Эти вышки способны поймать сигнал от любого сотового телефона, находящегося территориально в радиусе не более, чем 35 километров. "Общение" между БС и телефоном происходит через специальный служебный или голосовой канал.

Как только человек набирает нужный ему номер на мобильном устройстве, аппарат находит самую близко расположенную к нему Базовую Станцию поэтому специальному служебному каналу и просит у нее выделить голосовой канал. Вышка после получения запроса от устройства отправляет запрос на так называемый контроллер, который сокращенно будем называть BSC. Этот самый контроллер перенаправляет запрос уже на коммутатор. "Умный" коммутатор MSC определит, к какому оператору подключен вызываемый абонент.

Если оказывается, что звонок совершается на телефон внутри одной сети, например от абонента Билайн другому абоненту этого оператора, или внутри МТС, внутри Мегафон и так далее, то коммутатор начнет выяснять местоположение вызываемого абонента. Благодаря Home Location Register коммутатор найдет, где находится необходимый человек. Он может быть где угодно, дома, на работе, на даче или вообще в другой стране. Это не помешает коммутатору перевести звонок на соответствующий коммутатор. И тут "клубок" начнет "разматываться". То есть звонок от коммутатора - "ответчика" пойдет на контроллер - "ответчика", затем на его Базовую Станцию и на мобильный телефон соответственно.

Если же коммутатор выяснит, что вызываемый абонент принадлежит другому оператору, то отправит запрос на коммутатор уже другой сети.
Согласитесь, схема достаточно простая, но трудно представима. Как "умная" Базовая Станция находит телефон, отправляет запрос, а коммутатор сам определяет оператора и другого коммутатора. Что такое Базовая станция на самом деле? Оказывается, это несколько железных шкафов, которые располагаются либор под самой крышей здания, на чердаке или в специальном контейнере. Главное условие - помещение должно отлично кондиционироваться.

Логично, что у БС есть антенна, которая и помогает ей "ловить" связь. Антенна у БС состоит из нескольких частей (секторов), каждый из которых отвечает за территорию. Часть антенны, которая расположена вертикально отвечает за связь с мобильными телефонами, а круглая предназначены для связи с контроллером.

Один сектор способен одновременно принимать звонки от семидесяти телефонных аппаратов. Если учесть, что одна БС может состоять из шести секторов, то одновременно она спокойно обслужит 6*72=432 звонка.

Как правило, такой мощности Базовой станции хватает "с головой". Конечно, случаются ситуации, когда все население нашей страны начинает одновременно звонить друг другу. Это новый Год. Некоторым достаточно лишь произнести в трубку заветную фразу «С Новым Годом!», другие же готовы проговаривать часы с безлимитным тарифом от "Корпорации Связи" , обсуждая гостей и планы на всю ночь.

Однако вне зависимости от продолжительности разговора, Базовые станции не справляются, и дозвониться до абонента бывает очень сложно. Но в будние дни большую часть года БС из шести секторов вполне достаточно, тем более для оптимальной загруженности оператору подбирают Станции в соответствии с заселенностью территории. Некоторые операторы отдают свое предпочтение большим БС в целях улучшения качества предоставляемой связи.

Существует три диапазона, в которых может работать БС и которые определяют количество поддерживаемых аппаратов и охватываемое расстояние. В диапазоне 900 МГЦ станция способна охватить большую территорию, а вот в диапазоне 1800 МГц расстояние существенно сократится, зато увеличится число подключаемых передатчиков. Третий диапазон в 2100 МГц предполагает уже связь нового поколения - 3G.
Понятно, что в малонаселенных пунктах целесообразнее установить Базовую Станцию на 900 МГц, а вот в городе подойдет 1800 МГц, чтобы лучше проникать сквозь толстые бетонные стены, причем понадобится этих БС в десять раз больше, чем в поселке. Отметим, что одна БС может поддерживать три диапазона сразу.

Станции в режиме 900 МГц охватывают территорию радиусом в 35 км, однако если в данный момент она обслуживает мало телефонов, то может "пробить" и до 70 км. Естественно, наши мобильные телефоны могут "находить" БС даже на расстоянии 70 км. Базовые Станции разработаны так, чтобы максимально покрывать земную поверхность и обеспечивать большое количество людей связью именно на земле, поэтому при возможности ловить сигналы на расстоянии минимум 35 километров, на такое же расстояние, но в небо, Базовые Станции не "пробивают".

Для того, чтобы обеспечить своих пассажиров сотовой связью, некоторые авиакомпании начинают размещать маленькие БС на бортах самолетов. Связь "небесной" Базовой Станции с "земной" осуществляется с помощью спутникового канала. Так как работа мобильных устройств может помешать процессу полета, бортовые БС легко могут включаться / выключаться, имеют несколько режимов работы, вплоть до полного отключения передачи голосовых сообщений. Во время полета телефон может случайно быть переведен на базовую станцию с худшим сигналом или без свободных каналов. В таком случае звонок прервется. Все это тонкости работы сотовой связи в небе в движении.

Помимо самолетов, некоторые проблемы возникают и у жителей пентхаусов. Даже безлимитный тариф и ВИП - условия у оператора сотовой связи не помогут в случае разных БС. Житель квартиры на высоком этаже, переходя из одной комнаты в другую, потеряет связь. Это может произойти из-за того, что телефон в одной комнате "видит" одну БС, а в другой он "обнаруживает" другую. Поэтому при разговоре связь прерывается, так как эти БС находятся на относительном расстоянии друг от друга и даже не считаются "соседними" у одного оператора.

Миллионы людей во всем мире пользуются мобильными телефонами, поскольку благодаря мобильным телефонам стало намного легче общаться с людьми всего мира.

В наши дни мобильные телефоны представляют целый ряд функций, и с каждым днем их становиться все больше. В зависимости от модели мобильного телефона, можно делать следующее:

Сохранять важную информацию
Делать заметки или составлять список заданий
Записывать важные встречи и включать сигнал для напоминания
использовать для расчетов калькулятор
отсылать или получать почту
искать информацию (новости, высказывания, анекдоты и многое другое) в Интернете
играть в игры
смотреть телевизор
отправлять сообщения
пользоваться другими устройствами, например МР3 плеером, устройствами PDA и навигационной системой GPS.

Но разве Вас никогда не интересовало как работает мобильный телефон? И что отличает его от простого стационарного телефона? Что означают все эти термины PCS, GSM, CDMA и TDMA? В этой статье речь пойдет про новые возможности мобильных телефонов.

Начнем с того, что мобильный телефон, по сути, это радио – более усовершенствованного вида, но тем не менее радио. Сам телефон был создан Александром Грехемом Беллом в 1876 году, а беспроводная связь немного позже Николаем Теслой в 1880-е годы (впервые о беспроводной связи начал говорить итальянец Гуглиельмо Маркони в 1894 году). Было суждено, чтобы эти две грандиозные технологии объединились.


В давние времена, когда еще не было мобильных телефонов, люди для общения устанавливали в машины радио телефоны. Такая радиотелефонная система работала за счет одной главной антенны, установленной на башне в меже города, и поддерживала около 25 каналов. Для подключения к главной антенне телефон должен был иметь мощный передатчик – с радиусом около 70 км.

Но не многие могли пользоваться такими радио телефонами из-за ограниченного количества каналов.

Гениальность мобильной системы заключается в разделение города на несколько элементов(«сот»). Это способствует многократному использованию частоты по всему городу, поэтому миллионы людей могут пользоваться мобильными телефонами одновременно. «Сота» выбрана не случайно поскольку именно сотами(формой в виде шестиугольника) наиболее оптимально можно покрыть площадь.

Для того, чтобы лучше понять работу мобильного телефона, необходимо сравнить CB radio (т.е. обычное радио) и радиотелефон..

Полнодуплексное переносное устройство против полудуплексного – радиотелефон как и простое радио являются полудуплексными устройствами. Это значит, что два человека пользуются одной и той же частотой, поэтому они могут говорить только по очереди. Мобильный телефон – это полнодуплексное устройство, что означает, что человек пользуется двумя частотами: одна частота предназначена для того, чтобы слышать человека, находящегося на другой стороне, другая – для того, чтобы говорить. Поэтому по мобильным телефонам можно разговаривать одновременно.

Каналы - радиотелефон использует только один канал, в радио около 40 каналов. В простом мобильном телефоне может быть 1,664 канала и более.

В полудуплексных устройствах оба радиопередатчика используют одну и ту же частоту, поэтому говорить может только один человек. В полнодуплексных устройствах 2 передатчика используют разные частоты, поэтому люди могут говорить одновременно. Мобильные телефоны относятся к полнодуплексным устройствам.

В типовом аналоге мобильной системы в США, пользователь мобильного телефона использует около 800 частот для разговора по городу. Мобильный телефон разделяет город на несколько сот. Каждая сота имеет определенный размер и покрывает площадь в 26 км2. Соты похожи на шестигранники, заключенные в решетку.

Поскольку мобильные телефоны и станции используют маломощные передатчики, то несмежные соты могут использовать одинаковые частоты. Две соты могут использовать одинаковые частоты. Сотовая сеть - это мощные скоростные компьютеры, базовые станции (многочастотные УКВ приемопередатчики), распределенные по всей рабочей зоне сотовой сети, мобильные телефоны и пр. высокотехнологичное оборудование. О базовых станциях мы расскажем далее, а сейчас давайте рассмотрим «соты», которые составляют сотовую систему.


Одна сота в аналоговой сотовой системе использует 1/7 часть доступных двухсторонних каналов связи. Это значит, что каждая сота (из 7 сот в решетке) использует 1/7 часть доступных каналов, которые обладают своим набором частот и за счет этого не накладываются друг на друга:

Пользователь мобильного телефона обычно получает 832 радио частоты для разговора по городу.
Каждый мобильный телефон использует по 2 частоты на звонок – т.н. двухсторонний канал – поэтому на каждого пользователя мобильного телефона приходится 395 каналов связи (оставшиеся 42 частоты используются главным каналом – про него мы расскажем далее).

Таким образом, каждая сота имеет до 56 доступных каналов связи. Это значит, что одновременно разговаривать по мобильным телефонам смогут 56 человек. Аналогом сотовой сети считается первая мобильная технология 1G. С тех пор как начали использовать цифровую передачу информации (2G) число каналов значительно увеличилось.

В мобильных телефонах встроены маломощные передатчики, поэтому они работают на 2 уровнях сигнала: 0,6 ватт и 3 ватт (для сравнении приведем простое радио, которое работает на 4 ваттах). Базовые станции также используют маломощные передатчики, однако они имеют свои преимущества:

Передача сигнала базовой станции и мобильного телефона внутри каждой соты не позволяет далеко отходить от соты. Такими образом обе соты могут повторно использовать те же 56 частот. Те же частоты можно использовать и по всему городу.
Расход заряда мобильного телефона, который обычно работает от аккумулятора, значительно не высокий. Под маломощными передатчиками подразумевается маленькая батарейка, что и делает мобильные телефоны более компактными.

Сотовая сеть нуждается в ряде базовых станций, независимо от размеров города. В небольшом городе должно быть несколько сотен вышек. Всеми пользователями мобильных телефонов в любом городе управляет один главный офис, который называют Центром коммутации для мобильных телефонов. Этот центр контролирует все телефонные звонки и базовые станции в данной местности.


Коды мобильных телефонов

Электронный порядковый номер устройства (ESN) – уникальный 32-битный номер, запрограммированный в мобильный телефон производителем.
Мобильный идентификационный номер (MIN) – 10-значный код, выведенный из номера мобильного телефона.
Код идентификации системы (SID) – уникальный 5-значный код, который закреплен за каждой компанией Федеральной комиссии связи Последние два кода, MIN и SID, программируются в мобильный телефон, когда покупаешь карточку и включаешь телефон.

Каждый мобильный телефон имеет свой код. Коды нужны для распознания телефонов, владельцев мобильных телефонов и мобильных операторов. Например, у Вас есть мобильный телефон, Вы включаете его и пытаетесь позвонить. Вот что происходит в это время:

Когда Вы только включаете телефон, он ищет код идентификации на главном канале управления. Канал – это особая частота, которой пользуются мобильные телефоны и базовая станция для передачи сигналов. Если телефон не может найти канал управления, то он находится в зоне недосягаемости и на экране высвечивается сообщение "нет сети".
Когда телефон получает код идентификации, он сверяет его со своим кодом. При совпадении мобильному телефону разрешается подключение к сети.
Вместе с кодом, телефон запрашивает доступ в сеть и Центр коммутации для мобильных телефонов фиксирует положение телефона в базе данных, поэтому Центр коммутации знает каким телефоном Вы пользуетесь, когда хочет отослать вам сервисное сообщение.
Центр коммутации принимает звонки и может вычислить ваш номер. В любой момент он может просмотреть ваш номер телефона в своей базе данных.
Центр коммутации связывается с вашим мобильным телефоном, чтобы сообщить какую использовать частоту и после того, как мобильный телефон связывается с антенной, телефон получает доступ в сеть.

Сотовый телефон и базовая станция поддерживают постоянный радиоконтакт. Сотовый телефон периодически переключается с одной базовой станции на другую, от которой исходит более мощный сигнал. Если сотовый телефон выходит при движении из поля базовой станции, то он налаживает связь с другой, ближайшей базовой станцией, даже во время разговора. Две базовые станции «связываются» через Центр коммутации, который передает сигнал вашему мобильному телефону изменить частоту.

Бывают случаи, когда при движении сигнал переходит от одной соты на другую, принадлежащую другому мобильному оператору. В этом случаи сигнал не исчезает, а передается другому мобильному оператору.

Большинство современных сотовых телефонов могут работать в нескольких стандартах, что позволяет пользоваться услугами роуминга (англ. roaming - бродяжничество) в разных сотовых сетях. Центр коммутации, сотами которого вы теперь пользуетесь, соединяется с вашим центром коммутации и запрашивает подтверждение кода. Ваша система передает все данные про ваш телефон другой системе и Центр коммутации подключает вас к сотам нового мобильного оператора. И самое удивительное, что все это делается в течении нескольких секунд.

Самое неприятное во всем этом то, что за звонки по роумингу вы можете заплатить кругленькую сумму. На большинстве телефонах, когда вы только пересекаете границу, высвечивается услуга роуминга. В ином случае, вам лучше проверить карту покрытия мобильной связи, чтобы не пришлось впоследствии оплачивать «завышенные» тарифы. Поэтому проверьте сразу стоимости этой услуги.

Обратите внимание на то, что телефон должен работать не нескольких полосах, если вы хотите пользоваться услугой роуминга, Потому что разные страны используют различные полосы.


В 1983 был разработан первый аналоговый стандарт мобильной связи - AMPS (усовершенствованная подвижная телефонная служба). Этот аналоговый стандарт мобильной связи работает в диапазоне частот от 825 до 890 МГц. Для того, чтобы поддерживать конкуренцию и удерживать цены на рынке, федеральное правительство США требовало, чтобы на рынке было не менее двух компаний, занимающихся одной деятельностью. Одной из таких компаний в США была местная телефонная компания (LEC).

Каждая компания имела свои 832 частоты: 790 - для разговоров и 42 - для данных. Для создания одного канала использовались сразу две частоты. Диапазон частот для аналогового канала обычно составлял 30 КГц. Диапазон передачи и получения голосового канала разделен 45 МГц, для того, чтобы один канал не накладывался на другой.

Версия стандарта AMPS под названием NAMPS (узкополосная усовершенствованная система связи) использует новые цифровые технологии для того, чтобы система могла в три раза повысить свои возможности. Но даже несмотря на то, что она использует новые цифровые технологии, эта версия и далее остается всего аналогом. Аналоговые стандарты AMPS и NAMPS работают только на 800 МГц и не могут пока предложить большого разнообразия функций, как например, подключение к Интернету и работу с почтой.


Цифровые мобильные телефоны относятся ко второму поколению (2G) мобильных технологий. Они пользуются теми же радио технологиями, что и аналоговые телефоны, правда, немного иначе. Аналоговые системы не используют полностью сигнал между телефоном и мобильной сетью - аналоговые сигналы невозможно подавить или манипулировать ими также легко, как это можно делать с цифровыми сигналами. Это одна из причин, почему многие кабельные компании переходят на цифровую связь – таким образом, они могут использовать больше каналов в данном диапазоне. Просто удивительно насколько эффективной может быть цифровая система.

Многие цифровые мобильные системы используют частотную модуляцию (ЧМн) для передачи и получения данных через аналоговый портал AMPS. Частотная модуляция использует 2 частоты, одну для логической единицы, вторую для логического ноля, выбирая между двумя, при передаче цифровой информации между башней и мобильным телефоном. Для того, чтобы переделывать аналоговую информацию в цифровую и обратно необходима модуляция и схема кодирования. Это говорит о том, что цифровые мобильные телефоны должны уметь быстро обрабатывать данные.


По «сложности на кубический дюйм» мобильные телефоны являются одними из самых сложных современных устройств. Цифровые мобильные телефона могут производить миллионы вычислений в секунду для того, чтобы кодировать или раскодировать голосовой поток.

Любой обычный телефон состоит из нескольких деталей:

Микросхема (плата), которая является мозгом для телефона
Антенна
Жидкокристаллический дисплей (LCD)
Клавиатура
Микрофон
Динамик
Аккумулятор

Микросхема является центром всей системы. Далее мы рассмотрим какие бываю чипы и как работает каждый из них. Чип преобразования аналоговой информации в цифровую и обратно кодирует исходящий аудиосигнал с аналоговой системы в цифровую и входящий сигнал с цифровой системы в аналоговую.

Микропроцессор – это центральное процессорное устройство, отвечающее за выполнение основной доли работ по обработке информации. Он управляет клавиатурой и дисплеем, и многими другими процессами.

Чипы ROM и чип карты памяти позволяют хранить данные операционной системы мобильного телефона и другие данные пользователя, например, данные телефонной книги. Радиочастота управляет электропитанием и зарядом, а также работает с сотнями волн FM. Высокочастотный усилитель управляет сигналами, которые поступают на антенну или отражаются ею. Размер экрана значительно увеличился с тех пор, как в мобильном телефоне стало больше функций. Во многих телефонах есть записные книжки, калькуляторы и игры. А теперь еще многие телефоны подсоединяются к PDA или Web browser.

Некоторые телефоны сберегают определенную информацию, например, коды SID и MIN, в встроенной флэш-памяти, в других же используют внешние карты вроде карт SmartMedia.

Во многих телефонах установлены настолько крошечные динамики и микрофоны, что трудно представить, как они вообще издают звук. Как видно, динамики такого же размера, что и маленькая монетка, а микрофон – не больше батарейки для часов. Кстати, такие батарейки для наручных часов используют во внутреннем чипе мобильного телефона для работы часов.

Самое удивительное это то, что 30 лет назад многие такие детали занимали целый этаж здания, а теперь все это помещается на ладони человека.


Существует три самые распространенные способа использования радиочастот мобильными телефонами сети 2G для передачи информации:

FDMA (англ. Frequency Division Multiple Access - множественный доступ с разделением каналов по частоте) TDMA (англ. Time Division Multiple Access - множественный доступ с разделением по времени) CDMA (англ. Code Division Multiple Access) - множественный доступ с кодовым разделением.

Хотя названия этих способов кажутся такими запутанными, можно легко догадаться о том, как они работают, просто разбив название на отдельные слова.

Первое слово, frequency, time, code, указывает на метод доступа. Второе слово, division, “разделение”, говорит о том, что он разделяет звонки, основанные на методе доступа.

FDMA размещает каждый телефонный звонок на отдельной частоте TDMA выделяет каждому звонку определенное время на указанной ему частоте CDMA присваивает уникальный код каждому звонку и дальше передает его на свободную частоту.

Последнее слово каждого способа multiple – «множественный» говорит о том, что каждой сотой могут пользоваться несколько человек.

FDMA

FDMA (множественный доступ с разделением каналов по частоте) - способ использования радиочастот, когда в одном частотном диапазоне находится только один абонент, разные абоненты используют разные частоты в пределах соты. Является применением частотного мультиплексирования (FDM) в радиосвязи. Для того, чтобы лучше понять работу FDMA, нужно рассмотреть как работают радиостанции. Каждая радиостанция посылает свой сигнал на свободные полосы частот. Способ FDMA используется преимущественно для передачи аналоговых сигналов. И хотя этот способ несомненно может передавать и цифровую информацию, его не используют, так как он считается менее эффективным.

TDMA

TDMA (множественный доступ с разделением по времени) - способ использования радиочастот, когда в одном частотном интервале находится несколько абонентов, разные абоненты используют разные временные слоты (интервалы) для передачи. Является приложением мультиплексирования канала с разделением по времени (TDM - Time Division Multiplexing) к радиосвязи. При использовании TDMA, узкая полоса частоты (ширина 30 КГц и длина 6,7 миллисекунды) разбивается на три временные слоты.

Под узкой полосой частоты, обычно, понимают «каналы». Голосовые данные, превращенные в цифровую информацию, сжимаются, за счет чего они занимают меньше места. Поэтому, TDMA работает в три раза быстрее аналоговой системы, используя одинаковое количество каналов. Системы TDMA работают на диапазоне частоты 800 МГц (IS-54) или 1900 МГц (IS-136).

GSM

TDMA в настоящее время является доминирующей технологией для мобильных сотовых сетей и используется в стандарте GSM (Global System for Mobile Communications) (русск. СПС-900) - глобальный цифровой стандарт для мобильной сотовой связи, с разделением канала по принципу TDMA и высокой степенью безопасности благодаря шифрованию с открытым ключом. Однако, GSM иначе использует доступ TDMA и IS-136. Представим, что GSM и IS-136 это разные операционные системы, которые работают на одном процессоре, например, обе операционные системы Windows и Linux работают на базе Intel Pentium III. Системы GSM используют метод кодирования для засекречивания телефонных звонков с мобильных телефонов. Сеть GSM в Европе и Азии работает на частоте 900 МГц и 1800 МГц, а в США на частоте 850 МГц и 1900 МГц и используется в мобильной связи.

Блокирование вашего GSM телефона

GSM является международным стандартом в Европе, Австралии, большей части стран Азии и Африки. Пользователи мобильных телефонов могут купить один телефон, который будет работать везде, где поддерживается этот стандарт. Для того, чтобы подключиться к определенному мобильному оператору в разных странах, пользователи GSM просто меняют SIM карту. SIM карты сохраняют всю информацию и номера идентификации, которые необходимы для подключения к мобильному оператору.

К сожалению, частоты 850МГц/1900-МГц GSM, используемые в США, не совпадают с частотами международной системы. Поэтому, если вы живете в США, но за границей вам очень нужен мобильный телефон, вы можете купить трех- или четырехполосной телефон GSM и пользоваться им на родине и за ее пределами или просто купить мобильный телефон со стандартом GSM 900МГц/1800МГц для поездки за границу.

CDMA

CDMA (множественный доступ с кодовым разделением). Каналы трафика при таком способе разделения среды создаются присвоением каждому пользователю отдельного числового кода, который распространяется по всей ширине полосы. Нет временного разделения, все абоненты постоянно используют всю ширину канала. Полоса частот одного канала очень широка, вещание абонентов накладываeтся друг на друга но, поскольку их коды отличаются, они могут быть дифференцированы. CDMA является основой для IS-95 и работает на полосах частот 800 МГц и 1900 МГц.


Двухполосной и двухстандартный мобильный телефон

Когда вы едете путешествовать вам несомненно хочется найти такой телефон, который будет работать на нескольких полосах, в нескольких стандартах или будет совмещать и то и другое. Давайте более подробно рассмотрим каждую из этих возможностей:

Многополосной телефон может переключаться с одной частоты на другую. Например, двухполосный телефон TDMA может пользоваться службами TDMA в системе 800 МГц или 1900 МГц. Двухполосной телефон GSM может пользоваться службой GSM в трех полосах – 850 МГЦ, 900 МГц, 1800 МГц или 1900 МГц.
Многостандартный телефон. «Стандарт» в мобильных телефонах означает вид передачи сигнала. Поэтому телефон со стандартами AMPS и TDMA при необходимости может переключаться с одного стандарта на другой. Например, стандарт AMPS позволяет вам пользоваться аналоговой сетью в тех районах, в которых не поддерживается цифровая сеть.
Многополосной/ многостандартный телефон позволяет вам менять полосу частоты и стандарт передачи.

Телефоны, которые поддерживают данную функцию, автоматически меняют полосы или стандарты. Например, если телефон поддерживает две полосы, то он подключается к сети 800 МГЦ, если не может подключиться к полосе 1900 МГЦ. Когда в телефоне несколько стандартов, он вначале использует цифровой стандарт, а в случае его отсутствия переключается на аналоговый.

Мобильные телефона бывают двух- и трехполосные. Однако слово «трехполосной» может быть обманчивым. Оно может означать, что телефон поддерживает стандарты CDMA и TDMA, и аналоговый стандарт. И в то же время, оно может обозначать, что телефон поддерживает один цифровой стандарт в двух полосах и аналоговый стандарт. Для тех, кто отправляется в путешествие за границу, лучше приобрести телефон, который работает на полосе GSM 900 МГц для Европы и Азии и 1900 МГц для США, и помимо этого поддерживает аналоговый стандарт. В сущности, это двухполосный телефон, у которого один из этих режимов (GSM) поддерживает 2 полосы.

Сотовая связь и служба персональной связи

Служба персональной связи (PCS) – это по сути служба мобильных телефонов, которая делает акцент на персональную связь и мобильность. Основная особенность PCS состоит в том, что телефонный номер пользователя становится его персональным коммуникационным номером (Personal Communication Number - PCN), который "привязан" к самому пользователю, а не к его телефону или радиомодему. Путешествующий по миру пользователь с помощью PCS может свободно принимать телефонные звонки и электронную почту по своему PCN.

Сотовая связь изначально была создана для использования в автомобилях, в то время как персональная связь подразумевала большие возможности. По сравнению с традиционной сотовой связью служба PCS имеет ряд преимуществ. Во-первых, она полностью цифровая, что обеспечивает более высокую скорость передачи данных и облегчает применение технологий сжатия данных. Во-вторых, частотный диапазон, используемый для PCS (1850-2200 МГц), позволяет снизить стоимость коммуникационной инфраструктуры. (Поскольку габаритные размеры антенн базовых станций PCS меньше габаритных размеров антенн базовых станций сотовых сетей, то производство и установка их обходятся дешевле).

Теоретически, мобильная система в США работает на двух полосах частот – 824 и 894 МГц; PCS работает на частоте 1850 и 1990 МГц. И поскольку эта служба основывается на стандарте TDMA, то PCS имеет 8 временных слотов и интервал между каналами составляет 200 КГц, в отличие от обычных трех временных слотах и 30 КГц между каналами.


3G – это самая новейшая технология в области мобильной связи. 3G означает, что телефон принадлежит третьему поколению – первое поколение – аналоговые мобильные телефоны, второе – цифровые. Технология 3G используется в мультимедийных мобильных телефонах, которые обычно называют смартфонами. Такие телефоны имеют несколько диапазонов и высокоскоростную передачу данных.

3G использует несколько мобильных стандартов. Наиболее распространенными являются три из них:

CDMA2000 - является дальнейшим развитием стандарта 2 поколения CDMA One.
WCDMA (англ. Wideband Code Division Multiple Access - широкополосный CDMA) - технология радиоинтерфейса, избранная большинством операторов сотовой связи для обеспечения широкополосного радиодоступа с целью поддержки услуг 3G.
TD-SCDMA (англ. Time Division - Synchronous Code Division Multiple Access) - китайский стандарт мобильных сетей третьего поколения.

Сеть 3G может передавать данные со скоростью до 3 Мб/с (поэтому для того, чтобы закачать МP3 песню длительностью 3 минуты необходимо всего около 15 секунд). Для сравнения приведем мобильные телефоны второго поколения – самый быстрый 2G телефон может достигать скорости передачи данных до 144 Кб/с (для закачивания 3-х минутной песни нужно около 8 часов). Высокоскоростная передача данных 3G просто идеальна для скачивания информации с Интернета, отправки и получения больших мультимедийных файлов. Телефоны 3G – это своего рода мини-ноутбуки, которые могут работать с крупными приложениями, например, получение поточного видео с Интернета, отправка и получение факсов и загрузка e-mail сообщений с приложениями.

Конечно, для этого нужны базовые станции, которые передают радио сигналы от телефона к телефону.


Базовые станции мобильных телефонов – это литые металлические или решетчатые конструкции, возвышающиеся на сотни футов вверх. На этом рисунке показана современная вышка, которая «обслуживает» 3 разных мобильных оператора. Если взглянуть на основание базовых станций, то можно увидеть, что каждый мобильный оператор установил свое оборудование, которое в наше время занимает очень мало места (у основания более старых башен для такого оборудования строили небольшие помещения).

Базовая станция. фотография с сайта http://www.prattfamily.demon.co.uk

Внутри такого блока помещается радио передатчик и приемник, благодаря которым башня связывается с мобильными телефонами. Радиоприемники соединены с антенной на башне несколькими толстыми кабелями. Если внимательно присмотреться, то можно заметить, что сама башня, все кабели и оборудование компаний у основания базовые станции хорошо заземлены. Например, пластина с прикрепленными к ней зелеными проводами – это медная пластина заземления.


В мобильном телефоне, как и в любом другом электронном приборе, могут возникнуть неполадки:

Чаще всего, к ним относится коррозия деталей, вызванная попаданием влаги в устройство. Если в телефон попала влага, то перед включением нужно убедиться, что телефон полностью высушен.
Слишком высокая температура (например, в автомобиле) может повредить аккумулятор или электронную плату телефона. В результате слишком низкой температуры может выключиться экран.
Аналоговые мобильные телефоны часто сталкиваются с проблемой «клонирования». Телефон считается «клонированным», когда кто-либо перехватывает его номер идентификации и может бесплатно звонить на другие номера.

Вот как происходит «клонирование»: перед тем, как кому-нибудь звонить, ваш телефон передает свои коды ESN и MIN в сеть. Эти коды уникальны и именно благодаря им компания знает, кому отсылать счет за разговоры. Когда ваш телефон передает коды MIN/ESN, кто-то может услышать (при помощи специального прибора) и перехватить их. Если эти коды использовать в другом мобильном телефоне, то с него можно буде звонить совершенно бесплатно, поскольку счет будет оплачивать владелец этих кодов.

Сотовая связь считается одним из самых полезных изобретений человечества - наряду с колесом, электричеством, интернетом и компьютером. И лишь за несколько десятилетий эта технология пережила целый ряд революций. С чего начиналось беспроводное общение, как работают соты и какие возможности откроет новый мобильный стандарт 5G?

Первое использование подвижной телефонной радиосвязи относится к 1921 году - тогда в США полиция Детройта использовала одностороннюю диспетчерскую связь в диапазоне 2 МГц для передачи информации от центрального передатчика к приемникам в автомобилях полицейских.

Как появилась сотовая связь

Впервые идея сотовой связи была выдвинута в 1947 году - над ней работали инженеры из Bell Labs Дуглас Ринг и Рэй Янг. Однако реальные перспективы ее воплощения стали вырисовываться только к началу 1970-х годов, когда сотрудники компании разработали рабочую архитектуру аппаратной платформы сотовой связи.

Так, американские инженеры предложили размещать передающие станции не в центре, а по углам «ячеек», а чуть позже была придумана технология, позволяющая абонентам передвигаться между этими «сотами», не прерывая связи. После этого осталось разработать действующее оборудование для такой технологии.

Задачу успешно решила компания Motorola - ее инженер Мартин Купер 3 апреля 1973 года продемонстрировал первый работающий прототип мобильного телефона. Он позвонил начальнику исследовательского отдела компании-конкурента прямо с улицы и рассказал ему о собственных успехах.

Руководство Motorola немедленно вложило в перспективный проект 100 миллионов долларов, однако на коммерческий рынок технология вышла только через десять лет. Такая задержка связана с тем, что сначала требовалось создать глобальную инфраструктуру базовых станций сотовой связи.


На территории США этой работой занялась компания AT&T - телекоммуникационный гигант добился от федерального правительства лицензирования нужных частот и построил первую сотовую сеть, которая охватила крупнейшие американские города. В качестве первого мобильника выступила знаменитая модель Motorola DynaTAC 8000.

В продажу первый сотовый телефон поступил 6 марта 1983 года. Он весил почти 800 граммов, мог работать на одном заряде 30 минут в режиме разговора и заряжался около 10 часов. При этом аппарат стоил 3995 долларов - баснословную сумму по тем временам. Несмотря на это, мобильник мгновенно стал популярен.

Почему связь называется сотовой

Принцип мобильной связи прост - территория, на которой обеспечивается соединение абонентов, разбивается на отдельные ячейки или «соты», каждую из которых обслуживает базовая станция. При этом в каждой «соте» абонент получает идентичные услуги, поэтому сам он никак не чувствует пересечения этих виртуальных границ.

Обычно базовая станция в виде пары железных шкафов с оборудованием и антенн размещается на специально построенной вышке, однако в городе их нередко размещают на крышах высотных зданий. В среднем каждая станция ловит сигнал от мобильных телефонов на удалении до 35 километров.

Для улучшения качества обслуживания операторы также устанавливают фемтосоты - маломощные и миниатюрные станции сотовой связи, предназначенные для обслуживания небольшой территории. Они позволяют резко улучшить покрытие в тех местах, где это необходимо.Сотовую связь в России объединят с космосом

Находящийся в сети мобильник прослушивает эфир и находит сигнал базовой станции. В современную SIM-карту, кроме процессора и оперативки, вшит уникальный ключ, позволяющий авторизоваться в сотовой сети. Связь телефона со станцией может осуществляться по разным протоколам - например, цифровым DAMPS, CDMA, GSM, UMTS.

Сотовые сети разных операторов соединены друг с другом, а также со стационарной телефонной сетью. Если телефон выходит из поля действия базовой станции, аппарат налаживает связь с другими - установленное абонентом соединение незаметно передается другим «сотам», что обеспечивает непрерывную связь при перемещениях.

В России для вещания сертифицированы три диапазона - 800 МГц, 1800 МГц и 2600 МГц. Диапазон 1800 МГц считается самым популярным в мире, так как сочетает высокую емкость, большой радиус действия и высокую проникающую способность. Именно в нем сейчас работают большинство мобильных сетей.

Какие стандарты мобильной связи бывают

Первые мобильники работали с технологий 1G - это самое первое поколение сотовой связи, которое опиралось на аналоговые телекоммуникационные стандарты, главным из которых стал NMT - Nordic Mobile Telephone. Он предназначался исключительно для передачи голосового трафика.

К 1991 году относят рождение 2G - главным стандартом нового поколения стал GSM (Global System for Mobile Communications). Данный стандарт поддерживается до сих пор. Связь в этом стандарте стала цифровой, появилась возможность шифрования голосового трафика и отправки СМС.

Скорость передачи данных внутри GSM не превышала 9,6 кбит/с, что делало невозможной передачу видео или высококачественного звука. Проблему был призван решить стандарт GPRS, известный как 2.5G. Он впервые позволил пользоваться сетью Интернет владельцам мобильных телефонов.


Такой стандарт уже обеспечил скорость передачи данных до 114 Кбит/c. Однако вскоре он также перестал удовлетворять постоянно растущие запросы пользователей. Для решения этой проблемы в 2000 году был разработан стандарт 3G, который обеспечивал доступ к услугам Сети на скорости передачи данных в 2 Мбита.

Еще одним отличием 3G стало присвоение каждому абоненту IP-адреса, что позволило превратить мобильники в маленькие компьютеры, подключенные к интернету. Первая коммерческая сеть 3G была запущена 1 октября 2001 года в Японии. В дальнейшем пропускная способность стандарта неоднократно увеличивалась.

Наиболее современный стандарт - связь четвертого поколения 4G, которая предназначена только для высокоскоростных сервисов передачи данных. Пропускная способность сети 4G способна достигать 300 Мбит/сек, что дает пользователю практически неограниченные возможности работы в интернете.

Сотовая связь будущего

Стандарт 4G заточен на непрерывную передачу гигабайтов информации, в нем даже отсутствует канал для передачи голоса. За счет чрезвычайно эффективных схем мультиплексирования загрузка фильма высокого разрешения в такой сети займет у пользователя 10-15 минут. Однако даже его возможности уже считаются ограниченными.

В 2020 году ожидается официальный запуск нового поколения связи стандарта 5G, который позволит передачу больших объемов данных на сверхвысоких скоростях до 10 Гбит/сек. Кроме этого, стандарт позволит подключить к высокоскоростному интернету до 100 миллиардов устройств.

Именно 5G позволит появиться настоящему интернету вещей - миллиарды устройств будут обмениваться информацией в реальном времени. По оценке экспертов, сетевой трафик скоро вырастет на 400%. Например, автомобили начнут постоянно находиться в глобальной Сети и получать данные о дорожной обстановке.

Низкая степень задержки обеспечит связь между транспортными средствами и инфраструктурой в режиме реального времени. Ожидается, что надежное и постоянно действующее соединение впервые откроет возможность для запуска на дорогах полностью автономных транспортных средств.

Российские операторы уже экспериментируют с новыми спецификациями - например, работы в этом направлении ведет «Ростелеком». Компания подписала соглашение о строительстве сетей 5G в инновационном центре «Сколково». Реализация проекта входит в государственную программу «Цифровая экономика», недавно утвержденную правительством.

Если заметили ошибку, выделите фрагмент текста и нажмите Ctrl+Enter
ПОДЕЛИТЬСЯ: