Windows. Вирусы. Ноутбуки. Интернет. Office. Утилиты. Драйверы

Набор гармоник, образующих ряд Фурье (4.10) в тригоно­метрической форме, называют спектром периодического сигна­ла , а наборы амплитудU m k и начальных фазэтих гармо­ник - спектрамиамплитуд и фаз . Каждую гармонику:

можно отобразить двумя вертикальными линиями. Для этого на одной оси частот необходимо отложить значение частоты этой гармоники и изобразить вертикальную линию высотой, рав­ной амплитуде гармоникизатем на другой оси частот на частоте этой же гармоникиизобразить вторую вертикальную линию, равную по высоте начальной фазе гармоники.

Ряд Фурье (4.3) можно переписать в виде

Учитывая, что функция косинуса периодична с периодом 2 = 360°, т.е. ее значения повторяются через 360°, можно вы­честь целое число периодов из фазы гармонических составляю­щих. Тогда получим еще одну форму записи ряда (4.3):

Эти ряды можно изобразить графически. Гармоники этого сигнала, входящие в формулу (4.3), показаны на временных диа­граммах рис. 4.1, б -д. Другой способ графического изображе­ния составляющих ряда Фурье для сигнала на рис. 4.1, а приве­ден на рис. 4.5,а в. Амплитуды гармоник убывают по закону, гдеп - номер гармоники, а фазы гармоник изменяются по законуn где- фаза первой гармоники.

Для смещенной на четверть периода периодической последо­вательности прямоугольных импульсов (рис. 4.3, а ) формула ря­да Фурье (4.6) может быть видоизменена, если вспомнить, что знак «минус» перед гармоническим колебанием означает поворот колебания по фазе на 180°:

Рис. 4.5. Амплитуды и фазы гармоник сигнала (4.12) и (4.13)

Начальные фазы колебаний в ряде (4.14) поочередно прини­мают значения 0 и 180°. Графическое изображение ряда (4.14) дано на рис. 4.5, а и б.

Вертикальные линии на рис. 4.5 и 4.6 получили название спектральных линий , а наборы этих линий, или, что то же, на­боры амплитуди фазгармоник в (4.10), образуютспек­тры амплитуд и фаз данного сигнала.

Рис. 4.6. Амплитуды и фазы гармоник сигнала (4.14)

Радиоинженерам знакомы приборы – анализаторы спектров, которые откликаются на каждую гар­монику, входящую в состав сигнала сложной формы и позволяющие их измерять.

Таким образом, спектр амплитуд - это набор амплитуд гармоник , , , ... (включая постоянную и ос­новную составляющие), входящих в ряд Фурье, записанный в тригонометрической форме (4.10), а спектр фаз - это набор начальных фаз,, … этих гармоник. Комплексные ам­плитуды из (4.12) образуют комплексный спектр сигнала u (t ).

Анализ спектрального (гармонического) состава периодиче­ских сигналов - это вычисление амплитуд и начальных фаз гармонических составляющих ряда Фурье. Обычно для вычисления указанных величин используется форма записи ряда Фурье (4.2):

Покажем, что форма записи (4.15) эквивалентна форме запи­си (4.7).

Из приведенных выше рассуждений следует, что для анализа спектрального состава сигнала достаточно знать, как вычислять величины , U " mn иU mn в выражении (4.15).

Из формул (4.2) мы знаем, что постоянная составляющая ряда вычисляется как среднее значение функции:

Коэффициенты U " mk иU "" mk вычисляются как средние взве­шенные значения с весамиcosk иsinсоответственно:

Поскольку, то

Применяя формулу Эйлера

получаем окончательно выражение для комплексного спектра сиг­нала:

На спектр сигнала влияет не только форма сигнала, но и его параметры. Лучше всего рассмотреть это влияние на кон­кретном примере, а проще всего – на примере периодической последовательности прямоугольных импульсов. В достаточно общем случае эта последовательность изображена на рис. 4.7,а. Пери­од повторения импульсов обозначенТ", а отношение периода к длительности импульсов" называютскважностью и обозначают.

Вычисление коэффициентов ряда Фурье в тригонометриче­ской форме по формулам (4.16) - (4.18) приводит нас к записи (см. табл. 4.1)

где U 0 =U / q и

Рис. 4.7. Периодическая последовательность прямоугольных импульсов со скважностью q = 3 и ее спектр

Спектр амплитуд такой периодической последовательности со скважностью q = 3 изображен на рис. 4.7,б.

При значениях k , кратных скважностиq импульсной после­довательности, функцияпринимает нулевые значения и гармоники с этими номерами имеют нулевые амплитуды (в нашем примере сk = 3,6, 9, ...). Частота первой гармоники определяет­ся по формуле

Для гармоник с номерами k , для которых амплитудапо­ложительная, фазовый уголравен нулю; для гармоник же с номерамиk , для которых величинаокажется отрицатель­ной, фазовый угол принимает значение 180° (рис. 4.7, в).

Рассмотрим влияние на спектр последовательности прямо­угольных импульсов таких ее параметров, как период и длитель­ность импульса.

От величины периода зависит прежде всего частота основной гармоники, т.е. ее местоположение в спектре. Если мы будем, на­пример, увеличивать период импульсной последовательности (рис. 4.7, а ), то частота первой гармоникибудет уменьшаться.

Это приведет к сгущению спектральных линий (рис. 4.8, б ив ). Скважность импульсов будет также увеличи­ваться с ростом периода (в нашем примереq = 5), следовательно, обращаться в нуль будут гармоники с более высокими номерами, кратнымиq (k = 5, 10, 15, ...). Амплитуды всех гармоник умень­шатся.

Рис. 4.8. Последовательность прямоугольных импульсов со скважностью q = 5 и ее спектр

С другой стороны, если период последовательности оставлять неизменным (например, ), а длительность импульсов, скажем, уменьшать (например, до величины, как на рис. 4.9,а ), то первая гармоника не будет менять свое местоположение в спектре сигнала. С ростом же скважности в нуль будут обращаться, как и ранее, гармоники с номерами, кратнымиq (на рис. 4.8,б приk = 5,10,15,).

Рис. 4.9. Влияние длительности импульсов на спектр сигнала

Рис. 4.10. Влияние длительности импульсов и периода их повторения на спектр сигнала

На рис. 4.10, показан случай, когда подверглись изменению и период, и длительность импульса. Предлагаем читателям про­анализировать данную ситуацию самостоятельно. Примеры решения задач по расчету периодических сигналов также приведены в .

Хотя мы проанализировали довольно частные примеры, ха­рактерное поведение спектра наблюдается и для других видов пе­риодических импульсных последовательностей. Оно заключается в следуюoем:

При увеличении периода последовательности Т частота первой гармоникиуменьшается и спектральные линии сгущаются; наоборот, при уменьшении периода частота первой гармоники увеличивается и спектральные линии становятся реже;

Чем короче импульсы в последовательности, тем медленнее убы­вают с ростом номера п амплитуды гармоник; наоборот, чем шире импульсы, тем быстрее убывают амплитуды высших гармоник.

Основные положения изложенных в п. 4.2 материалов.

Не так давно товарищ Makeman описывал , как с помощью спектрального анализа можно разложить некоторый звуковой сигнал на слагающие его ноты. Давайте немного абстрагируемся от звука и положим, что у нас есть некоторый оцифрованный сигнал, спектральный состав которого мы хотим определить, и достаточно точно.

Под катом краткий обзор метода выделения гармоник из произвольного сигнала с помощью цифрового гетеродинирования, и немного особой, Фурье-магии.

Итак, что имеем.
Файл с отсчетами оцифрованного сигнала. Известно, что сигнал представляет собой сумму синусоид со своими частотами, амплитудами и начальными фазами, и, возможно, белый шум.

Что будем делать.
Использовать спектральный анализ для того, чтобы определить:

  • количество гармоник в составе сигнала, а для каждой: амплитуду, частоту (далее в контексте числа длин волн на длину сигнала), начальную фазу;
  • наличие/отсутствие белого шума, а при наличии, его СКО (среднеквадратическое отклонение);
  • наличие/отсутствие постоянной составляющей сигнала;
  • всё это оформить в красивенький PDF отчёт с блэкджеком и иллюстрациями.

Будем решать данную задачу на Java.

Матчасть

Как я уже говорил, структура сигнала заведомо известна: это сумма синусоид и какая-то шумовая составляющая. Так сложилось, что для анализа периодических сигналов в инженерной практике широко используют мощный математический аппарат, именуемый в общем «Фурье-анализ» . Давайте кратенько разберём, что же это за зверь такой.
Немного особой, Фурье-магии
Не так давно, в 19 веке, французский математик Жан Батист Жозеф Фурье показал, что любую функцию, удовлетворяющую некоторым условиям (непрерывность во времени, периодичность, удовлетворение условиям Дирихле) можно разложить в ряд, который в дальнейшем получил его имя - ряд Фурье .

В инженерной практике разложение периодических функций в ряд Фурье широко используется, например, в задачах теории цепей: несинусоидальное входное воздействие раскладывают на сумму синусоидальных и рассчитывают необходимые параметры цепей, например, по методу наложения.

Существует несколько возможных вариантов записи коэффициентов ряда Фурье, нам же лишь необходимо знать суть.
Разложение в ряд Фурье позволяет разложить непрерывную функцию в сумму других непрерывных функций. И в общем случае, ряд будет иметь бесконечное количество членов.

Дальнейшим усовершенствованием подхода Фурье является интегральное преобразование его же имени. Преобразование Фурье .
В отличие от ряда Фурье, преобразование Фурье раскладывает функцию не по дискретным частотам (набор частот ряда Фурье, по которым происходит разложение, вообще говоря, дискретный), а по непрерывным.
Давайте взглянем на то, как соотносятся коэффициенты ряда Фурье и результат преобразования Фурье, именуемый, собственно, спектром .
Небольшое отступление: спектр преобразования Фурье - в общем случае, функция комплексная, описывающая комплексные амплитуды соответствующих гармоник. Т.е., значения спектра - это комплексные числа, чьи модули являются амплитудами соответствующих частот, а аргументы - соответствующими начальными фазами. На практике, рассматривают отдельно амплитудный спектр и фазовый спектр .


Рис. 1. Соответствие ряда Фурье и преобразования Фурье на примере амплитудного спектра.

Легко видно, что коэффициенты ряда Фурье являются ни чем иным, как значениями преобразования Фурье в дискретные моменты времени.

Однако, преобразование Фурье сопоставляет непрерывной во времени, бесконечной функции другую, непрерывную по частоте, бесконечную функцию - спектр. Как быть, если у нас нет бесконечной во времени функции, а есть лишь какая-то записанная её дискретная во времени часть? Ответ на этот вопрос даёт дальнейшей развитие преобразования Фурье - дискретное преобразование Фурье (ДПФ) .

Дискретное преобразование Фурье призвано решить проблему необходимости непрерывности и бесконечности во времени сигнала. По сути, мы полагаем, что вырезали какую-то часть бесконечного сигнала, а всю остальную временную область считаем этот сигнал нулевым.

Математически это означает, что, имея исследуемую бесконечную во времени функцию f(t), мы умножаем ее на некоторую оконную функцию w(t), которая обращается в ноль везде, кроме интересующего нас интервала времени.

Если «выходом» классического преобразования Фурье является спектр – функция, то «выходом» дискретного преобразования Фурье является дискретный спектр. И на вход тоже подаются отсчёты дискретного сигнала.

Остальные свойства преобразования Фурье не изменяются: о них можно прочитать в соответствующей литературе.

Нам же нужно лишь знать о Фурье-образе синусоидального сигнала, который мы и будем стараться отыскать в нашем спектре. В общем случае, это пара дельта-функций, симметричная относительно нулевой частоты в частотной области.


Рис. 2. Амплитудный спектр синусоидального сигнала.

Я уже упомянул, что, вообще говоря, мы рассматриваем не исходную функцию, а некоторое её произведение с оконной функцией. Тогда, если спектр исходной функции - F(w), а оконной W(w), то спектром произведения будет такая неприятная операция, как свёртка этих двух спектров (F*W)(w) (Теорема о свёртке).

На практике это означает, что вместо дельта-функции, в спектре мы увидим что-то вроде этого:


Рис. 3. Эффект растекания спектра.

Этот эффект именуют также растеканием спектра (англ. spectral leekage). А шумы, появляющиеся вследствие растекания спектра, соответственно, боковыми лепестками (англ. sidelobes).
Для борьбы с боковыми лепестками применяют другие, непрямоугольные оконные функции. Основной характеристикой «эффективности» оконной функции является уровень боковых лепестков (дБ). Сводная таблица уровней боковых лепестков для некоторых часто используемых оконных функций приведена ниже.

Основной проблемой в нашей задаче является то, что боковые лепестки могут маскировать другие гармоники, лежащие рядом.


Рис. 4. Отдельные спектры гармоник.

Видно, что при сложении приведённых спектров, более слабые гармоники как бы растворятся в более сильной.


Рис. 5. Чётко видна лишь одна гармоника. Нехорошо.

Другой подход к борьбе с растеканием спектра состоит в вычитании из сигнала гармоник, создающих это самое растекание.
То есть, установив амплитуду, частоту и начальную фазу гармоники, можно вычесть её из сигнала, при этом мы уберём и «дельта-функцию», соответствующую ей, а вместе с ней и боковые лепестки, порождаемые ей. Другой вопрос состоит в том, как же точно узнать параметры нужной гармоники. Недостаточно просто взять нужные данные из комплексной амплитуды. Комплексные амплитуды спектра сформированы по целым частотам, однако, ничто не мешает гармонике иметь и дробную частоту. В этом случае, комплексная амплитуда как бы расплывается между двумя соседними частотами, и точную её частоту, как и другие параметры, установить нельзя.

Для установления точной частоты и комплексной амплитуды нужной гармоники, мы воспользуемся приёмом, широко применяемым во многих отраслях инженерной практики – гетеродинирование .

Посмотрим, что получится, если умножить входной сигнал на комплексную гармонику Exp(I*w*t). Спектр сигнала сдвинется на величину w вправо.
Этим свойством мы и воспользуемся, сдвигая спектр нашего сигнала вправо, до тех пор, пока гармоника не станет ещё больше напоминать дельта-функцию (то есть, пока некоторое локальное отношение сигнал/шум не достигнет максимума). Тогда мы и сможем вычислить точную частоту нужной гармоники, как w 0 – w гет, и вычесть её из исходного сигнала для подавления эффекта растекания спектра.
Иллюстрация изменения спектра в зависимости от частоты гетеродина показана ниже.


Рис. 6. Вид амплитудного спектра в зависимости от частоты гетеродина.

Будем повторять описанные процедуры до тех пор, пока не вырежем все присутствующие гармоники, и спектр не будет напоминать нам спектр белого шума.

Затем, надо оценить СКО белого шума. Хитростей здесь нет: можно просто воспользоваться формулой для вычисления СКО:

Автоматизируй это

Пришло время для автоматизации выделения гармоник. Повторим ещё разочек алгоритм:

1. Ищем глобальный пик амплитудного спектра, выше некоторого порога k.
1.1 Если не нашли, заканчиваем
2. Варируя частоту гетеродина, ищем такое значение частоты, при которой будет достигаться максимум некоторого локального отношения сигнал/шум в некоторой окрестности пика
3. При необходимости, округляем значения амплитуды и фазы.
4. Вычитаем из сигнала гармонику с найденной частотой, амплитудой и фазой за вычетом частоты гетеродина.
5. Переходим к пункту 1.

Алгоритм не сложный, и единственный возникающий вопрос - откуда же брать значения порога, выше которого будем искать гармоники?
Для ответа на этот вопрос, следует оценить уровень шума еще до вырезания гармоник.

Построим функцию распределения (привет, мат. cтатистика), где по оси абсцисс будет амплитуда гармоник, а по оси ординат - количество гармоник, не превышающих по амплитуде это самое значение аргумента. Пример такой построенной функции:


Рис. 7. Функция распределения гармоник.

Теперь построим еще и функцию - плотность распределения. Т.е., значения конечных разностей от функции распределения.


Рис. 8. Плотность функции распределения гармоник.

Абсцисса максимума плотности распределения и является амплитудой гармоники, встречающейся в спектре наибольшее число раз. Отойдем от пика вправо на некоторое расстояние, и будем считать абсциссу этой точки оценкой уровня шума в нашем спектре. Вот теперь можно и автоматизировать.

Посмотреть на кусок кода, детектирующий гармоники в составе сигнала

public ArrayList detectHarmonics() { SignalCutter cutter = new SignalCutter(source, new Signal(source)); SynthesizableComplexExponent heterodinParameter = new SynthesizableComplexExponent(); heterodinParameter.setProperty("frequency", 0.0); Signal heterodin = new Signal(source.getLength()); Signal heterodinedSignal = new Signal(cutter.getCurrentSignal()); Spectrum spectrum = new Spectrum(heterodinedSignal); int harmonic; while ((harmonic = spectrum.detectStrongPeak(min)) != -1) { if (cutter.getCuttersCount() > 10) throw new RuntimeException("Unable to analyze signal! Try another parameters."); double heterodinSelected = 0.0; double signalToNoise = spectrum.getRealAmplitude(harmonic) / spectrum.getAverageAmplitudeIn(harmonic, windowSize); for (double heterodinFrequency = -0.5; heterodinFrequency < (0.5 + heterodinAccuracy); heterodinFrequency += heterodinAccuracy) { heterodinParameter.setProperty("frequency", heterodinFrequency); heterodinParameter.synthesizeIn(heterodin); heterodinedSignal.set(cutter.getCurrentSignal()).multiply(heterodin); spectrum.recalc(); double newSignalToNoise = spectrum.getRealAmplitude(harmonic) / spectrum.getAverageAmplitudeIn(harmonic, windowSize); if (newSignalToNoise > signalToNoise) { signalToNoise = newSignalToNoise; heterodinSelected = heterodinFrequency; } } SynthesizableCosine parameter = new SynthesizableCosine(); heterodinParameter.setProperty("frequency", heterodinSelected); heterodinParameter.synthesizeIn(heterodin); heterodinedSignal.set(cutter.getCurrentSignal()).multiply(heterodin); spectrum.recalc(); parameter.setProperty("amplitude", MathHelper.adaptiveRound(spectrum.getRealAmplitude(harmonic))); parameter.setProperty("frequency", harmonic - heterodinSelected); parameter.setProperty("phase", MathHelper.round(spectrum.getPhase(harmonic), 1)); cutter.addSignal(parameter); cutter.cutNext(); heterodinedSignal.set(cutter.getCurrentSignal()); spectrum.recalc(); } return cutter.getSignalsParameters(); }

Практическая часть

Я не претендую на звание эксперта Java, и представленное решение может быть сомнительным как по части производительности и потреблению памяти, так и в целом философии Java и философии ООП, как бы я ни старался сделать его лучше. Написано было за пару вечеров, как proof of concept. Желающие могут ознакомиться с исходным кодом на

В соответствии со спектральным способом анализа прохождения сигналов через линейные цепи любой случайный сигнал S (T ) можно представить в виде бесконечной суммы элементарных аналитически однотипных детерминированных сигналов :

(2.8)

Подавая на вход линейной цепи (рис. 1.14), коэффициент передачи которой равен , элементарный детерминированный сигнал, можно найти элементарный отклик цепи, то есть сигнал на выходе цепи.

Рис.2.3. К определению сигнала на выходе линейной цепи.

Сигнал на выходе линейной цепи равен

(2.9)

Поскольку для линейных цепей справедлив принцип суперпозиции, то результирующий отклик будет равен:

(2.10)

Функции, описывающие элементарные сигналы, называются базисными функциями. Представление сигнала базисными функциями упрощается, если они являются ортогональными и ортонормированными.

Набор функций называется ортогональным, Если в интервале от до

при (2.11)

И ортонормированным, Если для всех Выполняется условие

. (2.12)

Ортогональность базисных функций, с помощью которых представляется исходный сигнал , является гарантией того, что представление сигнала может быть сделано единственным образом. Условию ортогональности отвечают гармонические функции кратных частот, а также функции Уолша, которые на отрезке своего существования от до принимают лишь значения, равные 1, дискретные сигналы Баркера и некоторые другие функции. Спектральный метод анализа сигналов основан на преобразованиях Фурье и состоит в замене сложной функции времени, описывающей сигнал, суммой простых гармонических сигналов, образующих частотный спектр этого сигнала. Знаменитый французский физик и математик Ж. Б. Фурье (1768 – 1830 г. г.) доказал, что любое изменение во времени некоторой функции можно аппроксимировать в виде конечной или бесконечной суммы ряда гармонических колебаний с разными амплитудами, частотами и начальными фазами. Этой функцией может быть ток или напряжение в электрической цепи.

Рассмотрим вначале представление периодического электрического сигнала (рис. 2.4), отвечающего условию

, (2.13)

где: — период сигнала; =1,2,3,….

Рис. 2.4. Периодический сигнал

Представим этот сигнал бесконечным тригонометрическим рядом:

Этот ряд называется рядом Фурье.

Возможна запись ряда Фурье в другом виде:

, (2.15)

Где: — модуль амплитуд гармоник;

— фазы гармоник;

— круговая частота;

— коэффициенты косинусоидальных составляющих; — коэффициенты синусоидальных составляющих; — среднее значение сигнала за период (постоянная составляющая).

Отдельные слагаемые рядов называют гармониками. Число является номером гармоники. Совокупность величин в ряде (2.15) называют спектром амплитуд, а совокупность величин — спектром фаз.

Ниже на рис. 2.5 представлены амплитудный и фазовый спектры периодического сигнала. Вертикальные отрезки амплитудного спектра представляют амплитуды гармоник и называются спектральными линиями.

Рис 2.5. Амплитудный и фазовый спектры периодического сигнала

Таким образом, спектр периодического сигналаЛинейчатый. Каждый периодический сигнал имеет вполне определенные амплитудный и фазовый спектры.

Сумма ряда (2.15) является бесконечной, но, начиная с некоторого номера, амплитуды гармоник настолько малы, что ими можно пренебречь и практически реальный периодический сигнал представляется функцией с ограниченным спектром. Интервал частот, соответствующий ограниченному спектру, называется шириной спектра.

Если функция , описывающая периодический сигнал, является четной, то сумма ряда (2.14) будет содержать только косинусоидальные составляющие. Если — нечетная функция, то сумма будет содержать только синусоидальные составляющие.

Возможно также представление периодического сигнала в виде комплексного ряда Фурье:

, (2.16)

— комплексные амплитуды спектра, содержащие информацию, как об амплитудном, так и о фазовом спектрах.

После подстановки значений и , получим:

(2.17)

Если подставить полученное значение в ряд (1.29), то он обращается в тождество. Таким образом, периодический электрический сигнал можно задавать либо функцией времени , либо комплексной амплитудой спектра.

2.2.1. Спектр периодической последовательности прямоугольных импульсов

Состав спектра периодической последовательности прямоугольных импульсов зависит от величины отношения периода последовательности к длительности импульса, называемого скважностью импульсов. В спектре будут отсутствовать гармоники с номерами кратными скважности импульсов. Скважность импульсов равна . На рис.1.17 приведены три импульсные последовательности с разными скважностями и соответствующие им спектры. Для периодической последовательности, скважность которой равна 2, в спектре отсутствуют 2, 4, 6 ,8 и т. д. гармоники. Для последовательности, скважность которой равна 3, в спектре отсутствуют 3, 6 и т. д. гармоники. Для последовательности, скважность которой равна 4, в спектре отсутствуют 4, 8 и т. д. гармоники. Во всех приведенных спектрах интервал между спектральными линиями равен величине обратной периоду последовательности. Точки на оси частот, в которых спектр равен нулю, соответствуют величине, обратной длительности импульсов периодических последовательностей.

Рис.2.6 .Периодические последовательности импульсов и их спектры.

2.2.2. Спектр непериодического сигнала

При рассмотрении спектра непериодического сигнала воспользуемся предельным переходом от периодического сигнала к непериодическому сигналу, устремив период к бесконечности.

Для периодического сигнала, представленного на рис. 2.4, ранее получено выражение (2.17) для комплексной амплитуды спектра:

(2.18)

Введем обозначение:

(2.19)

Построим модуль спектра :


Рис. 2.7. Модуль спектра периодического сигнала

Расстояние между спектральными линиями равно . Если увеличивать период , то будет уменьшаться интервал w1 . При интервал между спектральными линиями w1® dw. При этом периодическая последовательность импульсов превращается в одиночный импульс и модуль спектра стремится к непрерывной функции частоты . В результате предельного перехода от периодического сигнала к непериодическому линейчатый спектр вырождается в сплошной спектр, представленный на рис. 2.8.

Рис. 2.8. Спектр непериодического сигнала

При этом комплексная амплитуда равна:

. (2.20)

С учетом предельного перехода при

(2.21)

Подставим полученное выражение в ряд (2.16). При этом сумма трансформируется в интеграл, а значения дискретных частот в значение текущей частоты и непериодический сигнал можно представить в следующем виде:

. (2.22)

Это выражение соответствует обратному преобразованию Фурье. Огибающая сплошного спектра одиночного импульса совпадает с огибающей линейчатого спектра периодической функции, представляющей периодическое повторение этого импульса.

Интеграл Фурье позволяет любую непериодическую функцию представить в виде суммы бесконечного числа синусоидальных колебаний с бесконечно малыми амплитудами и бесконечно малым интервалом по частоте. Спектр сигнала определяется из выражения

Этот интеграл соответствует прямому преобразованию Фурье.

– комплексный спектр, в нём содержится информация, как о спектре амплитуд, так и о спектре фаз.

Таким образом, спектр непериодической функции сплошной. Можно сказать, что в нём содержатся «все» частоты. Если вырезать из сплошного спектра малый интервал частот , то частоты спектральных составляющих в этом участке будут отличаться сколь угодно мало. Поэтому спектральные составляющие можно складывать так, как будто все они имеют одну и ту же частоту и одинаковые комплексные амплитуды. Спектральная плотность есть отношение комплексной амплитуды малого интервала частот к величине этого интервала.

Спектральный анализ сигналов имеет фундаментальное значение в радиоэлектронике. Информация о спектре сигнала позволяет обоснованно выбирать полосу пропускания устройств, на которые воздействует этот сигнал.

2.2.3. Спектр одиночного прямоугольного видеоимпульса

Рассчитаем спектр одиночного прямоугольного импульса, амплитуда которого равна Е , а длительность — t, представленного на рис. 2.9.

Рис. 2.9. Одиночный прямоугольный импульс

В соответствии с выражением (2.24) спектр такого сигнала равен

=. (2.24)

Поскольку = 0 , когда , то частоты, на которых спектр обращается в нуль равны , где K =1,2,3…

На рис. 2.10 представлен комплексный спектр одиночного прямоугольного импульса длительностью .

Рис.2.10. Спектр одиночного прямоугольного импульса

Спектральная плотность определяет распределение энергии в спектре одиночного импульса. В общем случае распределение энергии неоднородно. Однородное распределение характерно для хаотического процесса, называемого «белым шумом».

Спектральная плотность импульса на нулевой частоте равна его площади. Приблизительно 90% энергии одиночного прямоугольного импульса сосредоточено в спектре, ширина которого определяется выражением

Соотношение (1.41) определяет требования к ширине полосы пропускания радиотехнического устройства. В задачах, где форма сигнала имеет второстепенное значение полосу пропускания устройства для этого сигнала можно выбрать равной ширине первого лепестка спектра. При этом неизвестна степень искажения формы сигнала. Двукратное увеличение полосы пропускания лишь на 5% увеличит энергию сигнала при одновременном возрастании уровня шумов.

В предыдущих разделах мы рассмотрели разложение периодических сигналов в ряд Фурье, а также изучили некоторые свойства представления периодических сигналов рядом Фурье. Мы говорили, что периодические сигналы можно представить как ряд комплексных экспонент, отстоящих друг от друга на частоту рад/c, где — период повторения сигнала. В результате мы можем трактовать представление сигнала в виде ряда комплексных гармоник как комплексный спектр сигнала. Комплексный спектр, в свою очередь, может быть разделен на амплитудный и фазовый спектры периодического сигнала.

В данном разделе мы рассмотрим спектр периодической последовательности прямоугольных импульсов, как одного из важнейших сигналов, используемого в практических приложениях.

Спектр периодической последовательности прямоугольных импульсов

Пусть входной сигнал представляет собой периодическую последовательность прямоугольных импульсов амплитуды , длительности секунд следующих с периодом секунд, как это показано на рисунке 1

Рисунок 1. Периодическая последовательность прямоугольных импульсов

Единица измерения амплитуды сигнала зависит от физического процесса, который описывает сигнал . Это может быть напряжение, или, сила тока, или любая другая физическая величина со своей единицей измерения, которая меняется во времени как . При этом, единицы измерения амплитуд спектра , , будут совпадать с единицами измерения амплитуды исходного сигнала.

Тогда спектр , , данного сигнала может быть представлен как:

Спектр периодической последовательности прямоугольных импульсов представляет собой множество гармоник с огибающей вида .

Свойства спектра периодической последовательности прямоугольных импульсов

Рассмотрим некоторые свойства огибающей спектра периодической последовательности прямоугольных импульсов.

Постоянная составляющая огибающей может быть получена как предел:

Для раскрытия неопределенности воспользуемся правилом Лопиталя :

Где называется скважностью импульсов и задает отношение периода повторения импульсов к длительности одиночного импульса.

Таким образом, значение огибающей на нулевой частоте равно амплитуде импульса деленной на скважность. При увеличении скважности (т.е. при уменьшении длительности импульса при фиксированном периоде повторения) значение огибающей на нулевой частоте уменьшается.

Используя скважность импульсов выражение (1) можно переписать в виде:

Нули огибающей спектра последовательности прямоугольных импульсов можно получить из уравнения:

Знаменатель обращается в ноль только при , однако, как мы выяснили выше , тогда решением уравнения будет

Тогда огибающая обращается в ноль если

На рисунке 2 показана огибающая спектра периодической последовательности прямоугольных импульсов (пунктирная линия) и частотные соотношения огибающей и дискретного спектра .

Рисунок 2. Cпектр периодической последовательности прямоугольных импульсов

Также показаны амплитудная огибающая , амплитудный спектр , а также фазовая огибающая и фазовый спектр .

Из рисунка 2 можно заметить, что фазовый спектр принимает значения когда огибающая имеет отрицательные значения. Заметим, что и соответствуют одной и той же точке комплексной плоскости равной .

Пример спектра периодической последовательности прямоугольных импульсов

Пусть входной сигнал представляет собой периодическую последовательность прямоугольных импульсов амплитуды , следующих с периодом секунды и различной скважностью . На рисунке 3а показаны временные осциллограммы указанных сигналов, их амплитудные спектры (рисунок 3б), а также непрерывные огибающие спектров (пунктирная линия).

Рисунок 3. Cпектр периодической последовательности прямоугольных импульсов при различном значении скважности
а — временные осциллограммы; б — амплитудный спектр

Как можно видеть из рисунка 3, при увеличении скважности сигнала, длительность импульсов уменьшается, огибающая спектра расширяется и уменьшается по амплитуде (пунктирная линия). В результате, в пределах главного лепестка увеличивается количество гармоник спектра .

Спектр смещенной во времени периодической последовательности прямоугольных импульсов

Выше мы подробно изучили спектр периодической последовательности прямоугольных импульсов для случая, когда исходный сигнал являлся симметричным относительно . В результате спектр такого сигнала является вещественным и задается выражением (1). Теперь мы рассмотрим, что произойдет со спектром сигнала если мы сместим сигнал во времени,как это показано на рисунке 4 .

Рисунок 4. Сдвинутая во времени периодическая последовательность прямоугольных импульсов

Смещенный сигнал можно представить как сигнал , задержанный на половину длительности импульса . Спектр смещенного сигнала можно представить согласно свойству циклического временного сдвига как:

Таким образом, спектр периодической последовательности прямоугольных импульсов, смещенной относительно нуля, не является чисто вещественной функцией, а приобретает дополнительный фазовый множитель . Амплитудный и фазовый спектры показаны на рисунке 5.

Рисунок 5. Амплитудный и фазовый спектры сдвинутой во времени периодической последовательности прямоугольных импульсов

Из рисунка 5 следует, что сдвиг периодического сигнала во времени не изменяет амплитудный спектр сигнала, но добавляет линейную составляющую к фазовому спектру сигнала.

Выводы

В данном разделе мы получили аналитическое выражение для спектра периодической последовательности прямоугольных импульсов.

Мы рассмотрели свойства огибающей спектра периодической последовательности прямоугольных импульсов и привели примеры спектров при различном значении скважности.

Также был рассмотрен спектр при смещении во времени последовательности прямоугольных импульсов и показано, что смещение во времени изменяет фазовый спектр и не влияет на амплитудный спектр сигнала.

Москва, Советское радио, 1977, 608 c.

Дёч, Г. Руководство по практическому применению преобразования Лапласа. Москва, Наука, 1965, 288 c.

Если заметили ошибку, выделите фрагмент текста и нажмите Ctrl+Enter
ПОДЕЛИТЬСЯ: