Windows. Вирусы. Ноутбуки. Интернет. Office. Утилиты. Драйверы

ПРИМЕНЯЕТСЯ К: SQL Server (начиная с 2016)База данных SQL AzureХранилище данных SQL AzureParallel Data Warehouse

Первичные и внешние ключи представляют собой два типа ограничений, которые могут использоваться для обеспечения целостности данных в таблицах SQL Server. Это важные объекты базы данных.

Эта тема описана в следующих разделах.

Ограничения первичного ключа

Ограничения внешнего ключа

Связанные задачи

Обычно в таблице есть столбец или сочетание столбцов, содержащих значения, уникально определяющие каждую строку таблицы. Этот столбец, или столбцы, называются первичным ключом (PK) таблицы и обеспечивает целостность сущности таблицы. Ограничения первичного ключа часто определяются в столбце идентификаторов, поскольку гарантируют уникальность данных.

При задании ограничения первичного ключа для таблицы компонента Компонент Database Engine гарантирует уникальность данных путем автоматического создания уникального индекса для первичных ключевых столбцов. Этот индекс также обеспечивает быстрый доступ к данным при использовании первичного ключа в запросах. Если ограничение первичного ключа задано более чем для одного столбца, то значения могут дублироваться в пределах одного столбца, но каждое сочетание значений всех столбцов в определении ограничения первичного ключа должно быть уникальным.

Как показано на следующем рисунке, столбцы ProductID и VendorID в таблице Purchasing.ProductVendor формируют составное ограничение первичного ключа для данной таблицы. При этом гарантируется, что каждая строка в таблице ProductVendor имеет уникальное сочетание значений ProductID и VendorID . Это предотвращает вставку повторяющихся строк.

    В таблице возможно наличие только одного ограничения по первичному ключу.

    Первичный ключ не может включать больше 16 столбцов, а общая длина ключа не может превышать 900 байт.

    Индекс, формируемый ограничением первичного ключа, не может повлечь за собой выход количества индексов в таблице за пределы в 999 некластеризованных индексов и 1 кластеризованный.

    Если для ограничения первичного ключа не указано, является ли индекс кластеризованным или некластеризованным, то создается кластеризованный индекс, если таковой отсутствует в таблице.

    Все столбцы с ограничением первичного ключа должны быть определены как не допускающие значения NULL. Если допустимость значения NULL не указана, то все столбцы c ограничением первичного ключа устанавливаются как не допускающие значения NULL.

    Если первичный ключ определен на столбце определяемого пользователем типа данных CLR, реализация этого типа должна поддерживать двоичную сортировку.

Внешний ключ (FK) - это столбец или сочетание столбцов, которое применяется для принудительного установления связи между данными в двух таблицах с целью контроля данных, которые могут храниться в таблице внешнего ключа. Если один или несколько столбцов, в которых находится первичный ключ для одной таблицы, упоминается в одном или нескольких столбцах другой таблицы, то в ссылке внешнего ключа создается связь между двумя таблицами. Этот столбец становится внешним ключом во второй таблице.

Например, таблица Sales.SalesOrderHeader связана с таблицей Sales.SalesPerson с помощью внешнего ключа, так как существует логическая связь между заказами на продажу и менеджерами по продажам. Столбец SalesPersonID в таблице Sales.SalesOrderHeader соответствует первичному ключевому столбцу в таблице SalesPerson . Столбец SalesPersonID в таблице Sales.SalesOrderHeader является внешним ключом для таблицы SalesPerson . С помощью установления данной связи по внешнему ключу значение для SalesPersonID не может быть вставлено в таблицу SalesOrderHeader , если оно в настоящий момент не содержится в таблице SalesPerson .

Максимальное количество таблиц и столбцов, на которые может ссылаться таблица в качестве внешних ключей (исходящих ссылок), равно 253. SQL Server 2016 увеличивает ограничение на количество других таблиц и столбцов, которые могут ссылаться на столбцы в одной таблице (входящие ссылки), с 253 до 10 000. (Требуется уровень совместимости не менее 130.) Увеличение имеет следующие ограничения:

    Превышение 253 ссылок на внешние ключи поддерживается только для операций DML DELETE. Операции UPDATE и MERGE не поддерживаются.

    Превышение 253 ссылок на внешние ключи в настоящее время недоступно для индексов columnstore, оптимизированных для памяти таблиц, базы данных Stretch или секционированных таблиц внешнего ключа.

Индексы в ограничениях внешнего ключа

В отличие от ограничений первичного ключа, при создании ограничения внешнего ключа соответствующий индекс автоматически не создается. Тем не менее, часто возникает необходимость создания индекса для внешнего ключа вручную по следующим причинам:

    Столбцы внешнего ключа часто используются в критериях соединения при совместном применении в запросах данных из связанных таблиц. Это реализуется путем сопоставления столбца или столбцов в ограничении внешнего ключа в одной таблице с одним или несколькими столбцами первичного или уникального ключа в другой таблице. Индекс позволяет компоненту Компонент Database Engine быстро находить связанные данные в таблице внешних ключей. Впрочем, создание индекса не является обязательным. Данные из двух связанных таблиц можно комбинировать, даже если между таблицами не определены ограничения первичного ключа или внешнего ключа, но связь по внешнему ключу между двумя таблицами показывает, что эти две таблицы оптимизированы для совместного применения в запросе, где ключи используются в качестве критериев.

    С помощью ограничений внешнего ключа в связанных таблицах проверяются изменения ограничений первичного ключа.

Ссылочная целостность

Главная задача ограничения внешнего ключа состоит в управлении данными, которые могут быть сохранены в таблице внешнего ключа, но это ограничение контролирует также изменение данных в таблице первичного ключа. Например, при удалении строки для менеджера по продажам из таблицы Sales.SalesPerson , идентификатор которого используется в заказах на продажу в таблице Sales.SalesOrderHeader , ссылочная целостность двух таблиц будет нарушена. Заказы на продажу удаленного менеджера в таблице SalesOrderHeader станут недействительными без связи с данными в таблице SalesPerson .

Ограничение внешнего ключа предотвращает возникновение этой ситуации. Ограничение обеспечивает целостность ссылок следующим образом: оно запрещает изменение данных в таблице первичного ключа, если такие изменения сделают недопустимой ссылку в таблице внешнего ключа. Если при попытке удалить строку в таблице первичного ключа или изменить значение этого ключа будет обнаружено, что удаленному или измененному значению первичного ключа соответствует определенное значение в ограничении внешнего ключа в другой таблице, то действие выполнено не будет. Для успешного изменения или удаления строки с ограничением внешнего ключа необходимо сначала удалить данные внешнего ключа в таблице внешнего ключа либо изменить в таблице внешнего ключа данные, которые связывают внешний ключ с данными другого первичного ключа.

Каскадная ссылочная целостность

С помощью каскадных ограничений ссылочной целостности можно определять действия, которые компонент Компонент Database Engine будет предпринимать, когда пользователь попытается удалить или обновить ключ, на который указывают еще существующие внешние ключи. Могут быть определены следующие каскадные действия.

NO ACTION
Компонент Компонент Database Engine формирует ошибку, после чего выполняется откат операции удаления или обновления строки в родительской таблице.

CASCADE
Соответствующие строки обновляются или удаляются из ссылающейся таблицы, если данная строка обновляется или удаляется из родительской таблицы. Значение CASCADE не может быть указано, если столбец типа timestamp является частью внешнего или ссылочного ключа. Действие ON DELETE CASCADE не может быть указано в таблице, для которой определен триггер INSTEAD OF DELETE. Предложение ON UPDATE CASCADE не может быть задано применительно к таблицам, для которых определены триггеры INSTEAD OF UPDATE.

SET NULL
Всем значениям, составляющим внешний ключ, присваивается значение NULL, когда обновляется или удаляется соответствующая строка в родительской таблице. Для выполнения этого ограничения внешние ключевые столбцы должны допускать значения NULL. Не может быть задано применительно к таблицам, для которых определены триггеры INSTEAD OF UPDATE.

SET DEFAULT
Все значения, составляющие внешний ключ, при удалении или обновлении соответствующей строки родительской таблицы устанавливаются в значение по умолчанию. Для выполнения этого ограничения все внешние ключевые столбцы должны иметь определения по умолчанию. Если столбец допускает значения NULL и значение по умолчанию явно не определено, значением столбца по умолчанию становится NULL. Не может быть задано применительно к таблицам, для которых определены триггеры INSTEAD OF UPDATE.

Ключевые слова CASCADE, SET NULL, SET DEFAULT и NO ACTION можно сочетать в таблицах, имеющих взаимные ссылочные связи. Если компонент Компонент Database Engine обнаруживает ключевое слово NO ACTION, оно остановит и произведет откат связанных операций CASCADE, SET NULL и SET DEFAULT. Если инструкция DELETE содержит сочетание ключевых слов CASCADE, SET NULL, SET DEFAULT и NO ACTION, то все операции CASCADE, SET NULL и SET DEFAULT выполняются перед поиском компонентом Компонент Database Engine операции NO ACTION.

Триггеры и каскадные ссылочные действия

Каскадные ссылочные действия запускают триггеры AFTER UPDATE или AFTER DELETE следующим образом:

    Все каскадные ссылочные действия, прямо вызванные исходными инструкциями DELETE или UPDATE, выполняются первыми.

    Если есть какие-либо триггеры AFTER, определенные для измененных таблиц, эти триггеры запускаются после выполнения всех каскадных действий. Эти триггеры запускаются в порядке, обратном каскадным действиям. Если для одной таблицы определены несколько триггеров, они запускаются в случайном порядке, если только не указаны выделенные первый и последний триггеры таблицы. Этот порядок определяется процедурой .

    Если последовательности каскадных действий происходят из таблицы, которая была непосредственной целью действий DELETE или UPDATE, порядок запуска триггеров этими последовательностями действий не определен. Однако одна последовательность действий всегда запускает все свои триггеры до того, как это начнет делать следующая.

    Триггер AFTER таблицы, являвшейся непосредственной целью действий DELETE или UPDATE, запускается вне зависимости от того, были ли изменены хоть какие-нибудь строки. В этом случае ни на какие другие таблицы каскадирование не влияет.

    Если один из предыдущих триггеров выполняет операции DELETE или UPDATE над другими таблицами, эти операции могут вызывать собственные последовательности каскадных действий. Эти вторичные последовательности действий обрабатываются для каждой операции DELETE или UPDATE после выполнения всех триггеров первичных последовательностей действий. Этот процесс может рекурсивно повторяться для последующих операций DELETE или UPDATE.

    Выполнение операций CREATE, ALTER, DELETE или других операций языка DDL внутри триггеров может привести к запуску триггеров DDL. Это может привести к дальнейшим операциям DELETE или UPDATE, которые начнут дополнительные последовательности каскадных действий и запустят свои триггеры.

    Если в любой конкретной последовательности каскадных ссылочных действий произойдет ошибка, в этой последовательности не будут запущены никакие триггеры AFTER, а для операций DELETE или UPDATE, создаваемых этой последовательностью, будет выполнен откат.

    У таблицы, для которой определен триггер INSTEAD OF, может также быть предложение REFERENCES, указывающее конкретное каскадное действие. Однако триггер AFTER целевой таблицы каскадного действия может выполнить инструкцию INSERT, UPDATE или DELETE для другой таблицы или представления, которое запустит триггер INSTEAD OF для этого объекта.

В следующей таблице перечислены общие задачи, связанные с ограничениями первичного ключа и внешнего ключа.

Вот так вот незаметно мы подошли к очень важной теме – первичных и внешних ключей. Если первые используются почти всеми, то вторые почему-то игнорируются. А зря. Внешние ключи – это не проблема, это реальная помощь в целостности данных.

1.2.5. Первичный ключ

Мы уже достаточно много говорили про ключевые поля, но ни разу их не использовали. Самое интересное, что все работало. Это преимущество, а может недостаток базы данных Microsoft SQL Server и MS Access. В таблицах Paradox такой трюк не пройдет и без наличия ключевого поля таблица будет доступна только для чтения.

В какой-то степени ключи являются ограничениями, и их можно было рассматривать вместе с оператором CHECK, потому что объявление происходит схожим образом и даже используется оператор CONSTRAINT. Давайте посмотрим на этот процесс на примере. Для этого создадим таблицу из двух полей "guid" и "vcName". При этом поле "guid" устанавливается как первичный ключ:

CREATE TABLE Globally_Unique_Data (guid uniqueidentifier DEFAULT NEWID(), vcName varchar(50), CONSTRAINT PK_guid PRIMARY KEY (Guid))

Самое вкусное здесь это строка CONSTRAINT. Как мы знаем, после этого ключевого слова идет название ограничения, и объявления ключа не является исключением. Для именования первичного ключа, я рекомендую использовать именование типа PK_имя, где имя – это имя поля, которое должно стать главным ключом. Сокращение PK происходит от Primary Key (первичный ключ).

После этого, вместо ключевого слова CHECK, которое мы использовали в ограничениях, стоит оператор PRIMARY KEY, Именно это указывает на то, что нам необходима не проверка, а первичный ключ. В скобках указывается одно, или несколько полей, которые будут составлять ключ.

Помните, что в ключевом поле не может быть одинакового значения у двух строк, в этом ограничение первичного ключа идентично ограничению уникальности. Это значит, что если сделать поле для хранения фамилии первичным ключом, то в такую таблицу нельзя будет записать двух Ивановых с разными именами. Это нарушает ограничение первичного ключа. Именно поэтому ключи являются ограничениями и объявляются также как и ограничение CHECK. Но это не верно только для первичных ключей и вторичных с уникальностью.

В данном примере, в качестве первичного ключа выступает поле типа uniqueidentifier (GUID). Значение по умолчанию для этого поля – результат выполнения серверной процедуры NEWID.

Внимание

Только один первичный ключ может быть создан для таблицы

Для простоты примеров, в качестве ключа желательно использовать численный тип и если позволяет база данных, то будет лучше, если он будет типа "autoincrement" (автоматически увеличивающееся/уменьшающееся число). В MS SQL Server таким полем является IDENTITY, а в MS Access это поле типа «счетчик».

Следующий пример показывает, как создать таблицу товаров, в которой в качестве первичного ключа выступает целочисленное поле с автоматическим увеличением:

CREATE TABLE Товары (id int IDENTITY(1, 1), товар varchar(50), Цена money, Количество numeric(10, 2), CONSTRAINT PK_id PRIMARY KEY (id))

Именно такой тип ключа мы будем использовать чаще всего, потому что в ключевом поле будут храниться легкие для восприятия числа и с ними проще и нагляднее работать.

Первичный ключ может состоять из более, чем одной колонки. Следующий пример создает таблицу, в которой поля "id" и "Товар" образуют первичный ключ, а значит, будет создан индекс уникальности на оба поля:

CREATE TABLE Товары1 (id int IDENTITY(1, 1), Товар varchar(50), Цена money, Количество numeric(10, 2), CONSTRAINT PK_id PRIMARY KEY (id, [Название товара]))

Очень часто программисты создают базу данных с ключевым полем в виде целого числа, но при этом в задаче четко стоит, что определенные поля должны быть уникальными. А почему не создать сразу первичный ключ из тех полей, которые должны быть уникальны и не надо будет создавать отдельные решения для данной проблемы.

Единственный недостаток первичного ключа из нескольких колонок – проблемы создания связей. Тут приходиться выкручиваться различными методами, но проблема все же решаема. Достаточно только ввести поле типа uniqueidentifier и производить связь по нему. Да, в этом случае у нас получаются уникальными первичный ключ и поле типа uniqueidentifier, но эта избыточность в результате не будет больше, чем та же таблица, где первичный ключ uniqueidentifier, а на поля, которые должны быть уникальными установлено ограничение уникальности. Что выбрать? Зависит от конкретной задачи и от того, с чем вам удобнее работать.

1.2.6. Внешний ключ

Внешний ключ также является ограничением CONSTRAINT и отображает связь между двумя таблицами. Допустим, что у вас есть две таблицы:

  • Names – содержит имена людей и состоит из полей идентификатора (ключевое поле), имя.
  • Phones – таблица телефонов, которая состоит из идентификатора (ключевое поле), внешний ключ для связи с таблицей names и строковое поле для хранения номера телефона.

У одного человека может быть несколько телефонов, поэтому мы разделили хранение данных в разные таблицы. На рисунке 1.4 визуально показана связь между двумя таблицами. Если вы уже работали со связанными таблицами, то этого для вас будет достаточно. Если вы слышите о связях впервые, то попробуем посмотреть на проблему поближе.

Для примера возьмем таблицу из трех человек. В таблице 1.3 показано содержимое таблицы "Names". Здесь всего три строки и у каждой свой уникальный главный ключ. Для уникальности, когда будем создавать таблицу, сделаем ключ автоматически увеличиваемым полем.

Таблица 1.3 Содержимое таблицы Names

Таблица 1.4. Содержимое таблицы Phones

В таблице 1.4 находится пять номеров телефонов. В поле главный ключ также уникальный главный ключ, которой также можно сделать автоматически увеличиваемым. Вторичный ключ – это связь с главным ключом таблицы Names. Как работает эта связь? У Петрова в таблице Names в качестве главного ключа стоит число 1. В таблице Phones во вторичном ключе ищем число 1 и получаем номера телефонов Петрова. То же самое и с остальными записями. Визуально связь можно увидеть на рисунке 1.5.

Такое хранение данных очень удобно. Если бы не было возможности создавать связанные таблицы, то в таблице Names пришлось бы забивать все номера телефонов в одно поле. Это неудобно с точки зрения использования, поддержки и поиска данных.

Можно создать в таблице несколько полей Names, но возникает вопрос – сколько. У одного человека может быть только 1 телефон, а у меня, например, их 3, не считая рабочих. Большое количество полей приводит к избыточности данных.

Можно для каждого телефона в таблице Names заводить отдельную строку с фамилией, но это легко только для такого простого примера, когда нужно вводить только фамилию и легко можно внести несколько записей для Петрова с несколькими номерами телефонов. А если полей будет 10 или 20? Итак, создание двух таблиц связанных внешним ключом можно увидеть в листинге 1.6.

Листинг 1.6. Создание таблиц связанных внешним ключом

CREATE TABLE Names (idName int IDENTITY(1,1), vcName varchar(50), CONSTRAINT PK_guid PRIMARY KEY (idName),) CREATE TABLE Phones (idPhone int IDENTITY(1,1), idName int, vcPhone varchar(10), CONSTRAINT PK_idPhone PRIMARY KEY (idPhone), CONSTRAINT FK_idName FOREIGN KEY (idName) REFERENCES Names (idName))

Внимательно изучите содержимое листинга. Он достаточно интересен, потому что использует некоторые операторы, которые мы уже рассмотрели и дополнительный пример не помешает. Для обеих таблиц создается ключевое поле, которое стоит первым, имеет тип int и автоматически увеличивается, начиная с 1 с приращением в единицу. Ключевое поле делается главным ключом с помощью ограничение CONSTRAINT.

В описании таблицы Phones последняя строка содержит новое для нас объявление, а именно – объявление внешнего ключа с помощью оператора FOREIGN KEY. Как видите, это тоже ограничение и чуть позже вы увидите почему. В скобках указывается поле таблицы, которое должно быть связано с другой таблицей. После этого идет ключевое слово REFERENCES (ссылка), имя таблицы, с которой должна быть связь (Names) и в скобках имя поля ("idName"). Таким образом, мы навели связь, которая отображена на рисунке 1.4.

Внимание!

Внешний ключ может ссылаться только на первичный ключ другой таблицы или на ограничение уникальности. Это значит, что после ключевого слова REFERENCES должно быть имя таблицы и в скобках можно указывать только первичный ключ или поле с ограничением UNIQUE. Другие поля указывать нельзя.

Теперь, если можно наполнять таблицы данными. Следующие три команды добавляют три фамилии, которые мы видели в таблице 1.3:

INSERT INTO Names(vcName) VALUES("Петров") INSERT INTO Names(vcName) VALUES("Иванов") INSERT INTO Names(vcName) VALUES("Сидоров")

Если вы уже работали с SQL то сможете добавить записи и для таблицы телефонов. Я опущу эти команды, а вы можете увидеть их в файле foreign_keys.sql директории Chapter1 на компакт диске.

Наша задача сейчас увидеть, в чем заключаются ограничительные действия внешнего ключа, давайте разберемся. Мы указали явную связь между двумя полями в разных таблицах. Если попытаться добавить в таблицу телефонов запись с идентификатором в поле "idName", не существующим в одноименном поле (имя можно было сделать и другим) таблице с фамилиями, то произойдет ошибка. Это нарушит связь между двумя таблицами, а ограничение внешнего ключа не позволит существовать записям без связи.

Ограничение действует и при изменении или удалении записей. Например, если попытаться удалить строку с фамилией Петров, то произойдет ошибка ограничения внешнего ключа. Нельзя удалять записи, для которых существуют внешне связанные строки. Для начала, нужно удалить все телефоны для данной записи и только после этого будет возможно удаление самой строки с фамилией Петров.

Во время создания внешнего ключа, можно указать ON DELETE CASCADE или ON UPDATE CASCADE. В этом случае, если удалить запись Петрова из таблице Names или изменить идентификатор, то все записи в таблице Phones, связанные со строкой Петрова будут автоматически обновлены. Никогда. Нет, нужно написать большими буквами: НИКОГДА не делайте этого. Все должно удаляться или изменяться вручную. Если пользователь случайно удалит запись из таблицы Names, то удаляться и соответствующие телефоны. Смысл тогда создавать внешний ключ, если половина его ограничительных возможностей исчезает! Все необходимо делать только вручную, а идентификаторы изменять не рекомендуется вообще никогда.

Удаление самих таблиц также должно начинаться с подчиненной таблицы, то есть с Phones, и только потом можно удалить главную таблицу Names.

Напоследок покажу, как красиво получить соответствие имен и телефонов из двух таблиц:

SELECT vcName, vcPhone FROM Names, Phones WHERE Names.idName=Phones.idName

Более подробно о подобных запросах мы поговорим в главе 2. Сейчас же я привел пример только для того, чтобы вы увидели мощь связанных таблиц.

Таблица может содержать до 253 внешних ключей, что вполне достаточно даже для построения самых сложных баз данных. Лично мне приходилось работать с базами данных, где количество внешних ключей не превышало 7 на одну таблицу. Если больше, то скорей всего база данных спроектирована неверно, хотя бывают и исключения.

Сама таблица также может иметь максимум 253 внешних ключей. Внешние ключи в таблице встречаются реже, в основном не более 3. Чаще всего в таблице может быть много ссылок на другие таблицы.

Внешний ключ может ссылаться на ту же таблицу, в которой он создается. Например, у вас есть таблица должностей в организации, как показано в таблице 1.5. Таблица состоит из трех полей: первичный ключ, внешний ключ и наименование должности. В любой организации может быть множество должностей, но вполне логичным будет в одной таблице отобразить их названия и структуру подчинения. Для этого внешний ключ нужно связать с первичным ключом таблицы должностей.

Таблица 1.5. Таблица с внутренней связью

В результате мы получаем, что у генерального директора внешний ключ нулевой, т.е. эта должность стоит во главе всех остальных. У коммерческого директора и директора по общим вопросам внешний ключ указывает на строку генерального директора. Это значит, что эти две должности подчиняются непосредственно генеральному директору. И так далее.

Посмотрим, как можно создать все это в виде SQL запроса:

CREATE TABLE Positions (idPosition int IDENTITY(1,1), idParentPosition int, vcName varchar(30), CONSTRAINT PK_idPosition PRIMARY KEY (idPosition), CONSTRAINT FK_idParentPosition FOREIGN KEY (idParentPosition) REFERENCES Positions (idPosition))

Как видите, внешний ключ просто ссылается на ту же таблицу, которую мы создаем. На компакт диске, в директории Chapter1 можно увидеть в файле foreign_keys_to_self.sql пример создания этой таблицы, наполнения его данными и отображения должностей с учетом их подчинения. В следующей главе мы рассмотрим возможность работы с такими таблицами более подробно.

Отношение один к одному

Пока что мы рассмотрели классическую связь, когда одной строке основной таблицы данных соответствует одна строка из связанной таблицы. Такая связь называется один ко многим. Но существуют и другие связи, и сейчас мы рассмотрим еще одну – один к одному, когда одна запись основной таблице связана с одной записью другой. Чтобы это реализовать, достаточно связать первичные ключи обеих таблиц. Так как первичные ключи не могут повторяться, то в обеих таблицах связанными могут быть только одна строка.

Следующий пример создает две таблицы, у которых создана связь между первичными ключами:

CREATE TABLE Names (idName uniqueidentifier DEFAULT NEWID(), vcName varchar(50), CONSTRAINT PK_guid PRIMARY KEY (idName)) CREATE TABLE Phones (idPhone uniqueidentifier DEFAULT NEWID(), vcPhone varchar(10), CONSTRAINT PK_idPhone PRIMARY KEY (idPhone), CONSTRAINT FK_idPhone FOREIGN KEY (idPhone) REFERENCES Names (idName))

Внешний ключ нужен только у одной из таблиц. Так как связь идет один к одному, то не имеет значения, в какой таблице создать его.

Многие ко многим

Самая сложная связь – многие ко многим, когда много записей из одной таблицы соответствует многим записям из другой таблицы. Чтобы такое реализовать, двух таблиц мало, необходимо три таблицы.

Для начала нужно понять, когда может использоваться связь многие ко многим? Допустим, что у вас есть две таблицы: список жителей дома и список номеров телефона. В одной квартире может быть более одного номера, а значит, одной фамилии может принадлежать два телефона. Получается, связь один ко многим. С другой стороны, в одной квартире может быть две семьи (коммунальная квартира или просто квартиросъемщик, который пользуется телефоном владельца), а значит, связь между телефоном и жителем тоже один ко многим. И самый сложный вариант – в коммунальной квартире находиться два телефона. В этом случае обоими номерами пользуются несколько жителей квартире. Вот и получается, что "много" семей может пользоваться "многими" телефонами (связь многие ко многим).

Как реализовать связь многие ко многим? На первый взгляд, в реляционной модели это невозможно. Лет 10 назад я долго искал разные варианты и в результате просто создавал одну таблицу, которая была переполнена избыточностью данных. Но однажды, мне досталась одна задача, благодаря которой уже из условия на поверхность вышло отличное решение – нужно создать две таблицы жителей квартир и телефонов и реализовать в них только первичный ключ. Внешние ключи в этой таблице не нужны. А вот связь между таблицами должна быть через третью, связующую таблицу. На первый взгляд это сложно и не понятно, но один раз разобравшись с этим методом, вы увидите всю мощь этого решения.

В таблицах 1.6 и 1.7 показаны примеры таблиц фамилий и телефонов соответственно. А в таблице 1.8 показана связующая таблица.

Таблица 1.6. Таблица фамилий

Таблица 1.7. Таблица телефонов

Таблица 1.8. Таблица телефонов

Давайте теперь посмотрим, какая будет логика поиска данных при связи многие ко многим. Допустим, что нам нужно найти все телефоны, которые принадлежат Иванову. У Иванова первичный ключ равен 1. Находим в связующей таблице все записи, у которых поле "Связь с именем" равно 1. Это будут записи 1 и 2. В этих записях в поле "Связь с телефоном" находятся идентификаторы 1 и 2 соответственно, а значит, Иванову принадлежат номера из таблицы телефонов, которые расположены в строках 1 и 2.

Теперь решим обратную задачу – определим, кто имеет доступ к номеру телефона 567575677. Этот номер в таблице телефонов имеет ключ 3. Ищем все записи в связующей таблице, где в поле "Связь с телефоном" равно 3. Это записи с номерами 4 и 5, которые в поле "Связь с именем" содержат значения 2 и 3 соответственно. Если теперь посмотреть на таблицу фамилий, то вы увидите под номерами 2 и 3 Петрова и Сидорова. Значит, именно эти два жителя пользуются телефоном с номером 567575677.

Просмотрите все три таблицы и убедитесь, что вы поняли, какие номера телефонов принадлежат каким жителям и наоборот. Если вы увидите эту связь, то поймете, что она проста, как три копейки и сможете быстро реализовать ее в своих проектах.

CREATE TABLE Names (idName uniqueidentifier DEFAULT NEWID(), vcName varchar(50), CONSTRAINT PK_guid PRIMARY KEY (idName)) CREATE TABLE Phones (idPhone uniqueidentifier DEFAULT NEWID(), vcPhone varchar(10), CONSTRAINT PK_idPhone PRIMARY KEY (idPhone)) CREATE TABLE LinkTable (idLinkTable uniqueidentifier DEFAULT NEWID(), idName uniqueidentifier, idPhone uniqueidentifier, CONSTRAINT PK_idLinkTable PRIMARY KEY (idLinkTable), CONSTRAINT FK_idPhone FOREIGN KEY (idPhone) REFERENCES Phones (idPhone), CONSTRAINT FK_idName FOREIGN KEY (idName) REFERENCES Names (idName))

У связующей таблицы два внешних ключа, которые связываются с таблицами имен и телефонов и один первичный ключ, который обеспечивает уникальность записей.

В качестве первичного ключа я выбрал GUID поле, потому что для решения именно этой задачи он более удобен. Дело в том, что нам нужно вставлять записи в две таблицы и в обоих случаях нужно указывать один и тот же ключ. Значение GUID можно сгенерировать, а потом можно использовать при вставке данных в обе таблицы.

Вы можете использовать в качестве ключа и автоматически увеличиваемое поле, но в этом случае проблему решить немного сложнее, точнее сказать, решать проблему неудобно. Например, добавляя номер телефона, необходимо сначала вставить соответствующую строку в таблицу, потом найти ее, определить ключ, который был назначен строке, и после этого уже наводить связь.

На данном этапе мы ограничиваемся только созданием таблиц, а в разделе 2.8 мы вернемся к этой теме и научимся и научимся работать со связанными таблицами. Работа со связью один к одному и один ко многим отличается не сильно, потому что в этой схеме участвует только две таблицы. Связь многие ко многим немного сложнее из-за связующей таблицы, поэтому мы ее рассмотрим отдельно в разделе 2.27.

На Рисунке представлена таблица (отношение степени 5), содержащая некоторые сведения о работниках гипотетического предприятия. Строки таблицы соответствуют кортежам. Каждая строка фактически представляет собой описание одного объекта реального мира (в данном случае работника), характеристики которого содержатся в столбцах. Реляционные отношения соответствуют наборам сущностей, а кортежи - сущностям. Столбцы в таблице, представляющей реляционное отношение, называют атрибутами .

Каждый атрибут определен на домене, поэтому домен можно рассматривать как множество допустимых значений данного атрибута. Несколько атрибутов одного отношения и даже атрибуты разных отношений могут быть определены на одном и том же домене.

Атрибут, значение которого однозначно идентифицирует кортежи, называется ключевым (или просто ключом ). Ключом является атрибут "Табельный номер", поскольку его значение уникально для каждого работника предприятия. Если кортежи идентифицируются только сцеплением значений нескольких атрибутов, то говорят, что отношение имеет составной ключ.

Первичный ключ - в реляционной модели данных один из потенциальных ключей отношения, выбранный в качестве основного ключа (или ключа по умолчанию).

Отношение может содержать несколько ключей. Всегда один из ключей объявляется первичным , его значения не могут обновляться. Все остальные ключи отношения называются возможными ключами .

С точки зрения теории все потенциальные (возможные) ключи отношения эквивалентны, то есть обладают одинаковыми свойствами уникальности и минимальности. Однако в качестве первичного обычно выбирается тот из потенциальных ключей, который наиболее удобен для тех или иных практических целей, например для создания внешних ключей в других отношениях либо для создания кластерного индекса. Поэтому в качестве первичного ключа как правило выбирают тот, который имеет наименьший размер (физического хранения) и/или включает наименьшее количество атрибутов.

Если первичный ключ состоит из единственного атрибута, его называют простым ключом .

Если первичный ключ состоит из двух и более атрибутов, его называют составным ключом . Так, имя, фамилия, отчество, номер паспорта, серия паспорта не могут быть первичными ключами по отдельности, так как могут оказаться одинаковыми у двух и более людей. Но не бывает двух личных документов одного типа с одинаковыми серией и номером. Поэтому в отношении, содержащем данные о людях, первичным ключом может быть подмножество атрибутов, состоящее из типа личного документа, его серии и номера.



В отличие от иерархической и сетевой моделей данных в реляционной отсутствует понятие группового отношения. Для отражения ассоциаций между кортежами разных отношений используется дублирование их ключей.

Атрибуты, представляющие собой копии ключей других отношений, называются внешними ключами .

Например, связь между отношениями ОТДЕЛ и СОТРУДНИК создается путем копирования первичного ключа "Номер_отдела" из первого отношения во второе. Таким образом, для того, чтобы получить список работников данного подразделения, необходимо: 1) Из таблицы ОТДЕЛ установить значение атрибута "Номер_отдела" , соответствующее данному "Наименованию_отдела". 2) выбрать из таблицы СОТРУДНИК все записи, значение атрибута "Номер_отдела" которых равно полученному на предыдушем шаге. Для того, чтобы узнать в каком отделе работает сотрудник, нужно выполнить обратную операцию: 1) Определяем "Номер_отдела" из таблицы СОТРУДНИК. 2) По полученному значению находим запись в таблице ОТДЕЛ.


18. Нормализация в реляционных БД, понятие нормальной формы при проектировании баз данных.

Нормальная форма - свойство отношения в реляционной модели данных, характеризующее его с точки зрения избыточности, которая потенциально может привести к логически ошибочным результатам выборки или изменения данных. Нормальная форма определяется как совокупность требований, которым должно удовлетворять отношение.

Процесс преобразования базы данных к виду, отвечающему нормальным формам, называется нормализацией . Нормализация предназначена для приведения структуры базы данных к виду, обеспечивающему минимальную избыточность, то есть нормализация не имеет целью уменьшение или увеличение производительности работы или же уменьшение или увеличение объёма БД. Конечной целью нормализации является уменьшение потенциальной противоречивости хранимой в БД информации.



Устранение избыточности производится, как правило, за счёт декомпозиции отношений таким образом, чтобы в каждом отношении хранились только первичные факты (то есть факты, не выводимые из других хранимых фактов).

Функциональные зависимости.

Реляционная база данных содержит как структурную, так и семантическую информацию. Структура базы данных определяется числом и видом включенных в нее отношений, и связями типа "один ко многим", существующими между кортежами этих отношений. Семантическая часть описывает множество функциональных зависимостей, существующих между атрибутами этих отношений. Дадим определение функциональной зависимости.

19. 1НФ: Основные определения и правила преобразования.

Для обсуждения первой нормальной формы необходимо дать два определения:

Простой атрибут - атрибут, значения которого атомарны (неделимы).

Сложный атрибут - получается соединением нескольких атомарных атрибутов, которые могут быть определены на одном или разных доменах (его также называют вектор или агрегат данных).

Определение первой нормальной формы:

отношение находится в 1NF если значения всех его атрибутов атомарны. . В противном случае это вообще не таблица и такие атрибуты необходимо декомпозировать.

Рассмотрим пример:

В базе данных отдела кадров предприятия необходимо хранить сведения о служащих, которые можно попытаться представить в отношении

СЛУЖАЩИЙ(НОМЕР_СЛУЖАЩЕГО, ИМЯ, ДАТА_РОЖДЕНИЯ, ИСТОРИЯ_РАБОТЫ, ДЕТИ).

Из внимательного рассмотрения этого отношения следует, что атрибуты "история_работы" и "дети" являются сложными, более того, атрибут "история_работы" включает еще один сложный атрибут "история_зарплаты".
Данные агрегаты выглядят следующим образом:

 ИСТОРИЯ_РАБОТЫ (ДАТА_ПРИЕМА, НАЗВАНИЕ, ИСТОРИЯ_ЗАРПЛАТЫ),

 ИСТОРИЯ_ЗАРПЛАТЫ (ДАТА_НАЗНАЧЕНИЯ, ЗАРПЛАТА),

 ДЕТИ (ИМЯ_РЕБЕНКА, ГОД_РОЖДЕНИЯ).

Их связь представлена на рис. 3.3.

Рис.3.3. Исходное отношение.

Для приведения исходного отношения СЛУЖАЩИЙ к первой нормальной форме необходимо декомпозировать его на четыре отношения, так как это показано на следующем рисунке:

Рис.3.4. Нормализованное множество отношений.

Здесь первичный ключ каждого отношения выделен синей рамкой, названия внешних ключей набраны шрифтом синего цвета. Напомним, что именно внешние ключи служат для представления функциональных зависимостей, существующих в исходном отношении. Эти функциональные зависимости обозначены линиями со стрелками.

Алгоритм нормализации описан Е.Ф.Коддом следующим образом:

  • Начиная с отношения, находящегося на верху дерева (рис. 3.3.), берется его первичный ключ, и каждое непосредственно подчиненное отношение расширяется путем вставки домена или комбинации доменов этого первичного ключа.
  • Первичный Ключ каждого расширенного таким образом отношения состоит из Первичного Ключа, который был у этого отношения до расширения и добавленного Первичного Ключа родительского отношения.
  • После этого из родительского отношения вычеркиваются все непростые домены, удаляется верхний узел дерева, и эта же процедура повторяется для каждого из оставшихся поддеревьев.

20. 2НФ: Основные определения и правила преобразования.

Очень часто первичный ключ отношения включает несколько атрибутов (в таком случае его называют составным ) - см., например, отношение ДЕТИ, показанное на рис. 3.4 вопрос 19. При этом вводится понятие полной функциональной зависимости .

Определение:

неключевой атрибут функционально полно зависит от составного ключа если он функционально зависит от всего ключа в целом, но не находится в функциональной зависимости от какого-либо из входящих в него атрибутов.

Пример:

Пусть имеется отношение ПОСТАВКИ (N_ПОСТАВЩИКА, ТОВАР, ЦЕНА).
Поставщик может поставлять различные товары, а один и тот же товар может поставляться разными поставщиками. Тогда ключ отношения - "N_поставщика + товар" . Пусть все поставщики поставляют товар по одной и той же цене. Тогда имеем следующие функциональные зависимости:

  • N_поставщика, товар -> цена
  • товар -> цена

Неполная функциональная зависимость атрибута "цена" от ключа приводит к следующей аномалии: при изменении цены товара необходим полный просмотр отношения для того, чтобы изменить все записи о его поставщиках. Данная аномалия является следствием того факта, что в одной структуре данных объединены два семантических факта. Следующее разложение дает отношения во 2НФ:

  • ПОСТАВКИ (N_ПОСТАВЩИКА, ТОВАР)
  • ЦЕНА_ТОВАРА (ТОВАР, ЦЕНА)

Таким образом, можно дать

Определение второй нормальной формы: Отношение находится во 2НФ, если оно находится в 1НФ и каждый неключевой атрибут функционально полно зависит от ключа.

21. 3НФ: Основные определения и правила преобразования.

Перед обсуждением третьей нормальной формы необходимо ввести понятие: транзитивная функциональная зависимость .

Определение:

Пусть X, Y, Z - три атрибута некоторого отношения. При этом X --> Y и Y --> Z, но обратное соответствие отсутствует, т.е. Z -/-> Y и Y -/-> X. Тогда Z транзитивно зависит от X.
Пусть имеется отношение ХРАНЕНИЕ (ФИРМА , СКЛАД, ОБЪЕМ), которое содержит информацию о фирмах, получающих товары со складов, и объемах этих складов. Ключевой атрибут - "фирма" . Если каждая фирма может получать товар только с одного склада, то в данном отношении имеются следующие функциональные зависимости:

  • фирма -> склад
  • склад -> объем

При этом возникают аномалии:

  • если в данный момент ни одна фирма не получает товар со склада, то в базу данных нельзя ввести данные о его объеме (т.к. не определен ключевой атрибут)
  • если объем склада изменяется, необходим просмотр всего отношения и изменение картежей для всех фирм, связанных с данным складом.

Для устранения этих аномалий необходимо декомпозировать исходное отношение на два:

  • ХРАНЕНИЕ (ФИРМА , СКЛАД)
  • ОБЪЕМ_СКЛАДА (СКЛАД , ОБЪЕМ)

Определение третьей нормальной формы:

Отношение находится в 3НФ, если оно находится во 2НФ и каждый не ключевой атрибут не транзитивно зависит от первичного ключа.

Ранее в этой книге, мы указывали на определенные связи которые существуют между некоторыми полями типовых таблиц. Поле snum таблицы Заказчиков, например, соответствует полю snum в таблице Продавцов и таблице Порядков. Поле cnum таблицы Заказчиков также соответствует полю cnum таблицы Порядков. Мы назвали этот тип связи - справочной целостностью; и в ходе обсуждения, вы видели как ее можно использовать.

В этой главе, вы будете исследовать справочную целостность более под- робно и выясним все относительно ограничений которые вы можете использовать чтобы ее поддерживать. Вы также увидите, как предписывает- с это ограничение когда вы используете команды модификации DML. Поскольку справочна целостность включает в себя связь полей или групп полей, часто в разных таблицах, это действие может быть несколько слож- нее чем другие ограничения. По этой причине, хорошо иметь с ней полное знакомство, даже если вы не планируете создавать таблицы. Ваши команды модификации могут стать эффективнее с помощью ограничения справочной целостности (как и с помощью других ограничений, но ограничение справочной целостности может воздействовать на другие таблицы кроме тех в которых оно определено), а определенные функции запроса, такие как объединения, являются многократно структурированы в терминах связей справочной целостности (как подчеркивалось в Главе 8).

ВНЕШНИЙ КЛЮЧ И РОДИТЕЛЬСКИЙ КЛЮЧ

Когда все значения в одном поле таблицы представлены в поле другой таблицы, мы говорим что первое поле ссылается на второе. Это указывает на прямую связь между значениями двух полей. Например, каждый из заказчиков в таблице Заказчиков имеет поле snum которое ука- зывает на продавца назначенного в таблице Продавцов. Для каждого порядка в таблице Порядков, имеется один и только этот про- давец и один и только этот заказчик. Это отображается с помощью полей snum и cnum в таблице Порядков.

Когда одно поле в таблице ссылается на другое, оно называется - внешним ключом; а поле на которое оно ссылается, называется - родительским ключом. Так что поле snum таблицы Заказчиков - это внешний ключ, а поле snum на которое оно ссылается в таблице Продавцов - это родительский ключ.

Аналогично, пол cnum и snum таблицы Порядков - это внешние ключи которые ссылаются к их родительским ключам с именами в таблице За- казчиков и таблице Продавцов. Имена внешнего ключа и родительского ключа не обязательно должны быть одинаковыми, это - только соглашение которому мы следуем чтобы делать соединение более понятным.

МНОГО-СТОЛБЦОВЫЕ ВНЕШНИЕ КЛЮЧИ

В действительности, внешний ключ не обязательно состоит только из одного пол. Подобно первичному ключу, внешний ключ может иметь любое число полей, которые все обрабатываются как единый модуль. Внешний ключ и родительский ключ на который он ссылается, конечно же, должны иметь одинаковый номер и тип пол, и находиться в одинаковом порядке. Внешние ключи состоящие из одного пол - те что мы использовали исключительно в наших типовых таблицах, наиболее общие. Чтобы сохранить простоту нашего обсуждения, мы будем часто говорить о внешнем ключе как об одиночном столбце. Это не случайно. Если это не от- метить, любой скажет о поле которое является внешним ключом, что оно также относится и к группе полей которая является внешним ключом.

СМЫСЛ ВНЕШНЕГО И РОДИТЕЛЬСКОГО КЛЮЧЕЙ

Когда поле - является внешним ключом, оно определенным образом связано с таблицей на которую он ссылается. Вы, фактически, говорите - " каждое значение в этом поле (внешнем ключе) непосредственно привязано к зна- чению в другом поле (родительском ключе)." Каждое значение (каждая строка) внешнего ключа должно недвусмысленно ссылаться к одному и только этому значению (строке) родительского ключа. Если это так, то фактически ваша система, как говорится, будет в состоянии справочной целостности. Вы можете увидеть это на примере. Внешний ключ snum в таблице Заказ- чиков имеет значение 1001 для строк Hoffman и Clemens. Предположим что мы имели две строки в таблице Продавцов со значением в поле snum = 1001. Как мы узнаем, к которому из двух продавцов были назначены заказчики Hoffman и Clemens ? Аналогично, если нет никаких таких строк в таблице Продавцов, мы получим Hoffman и Clemens назначенными к продавцу которого не существует!

Понятно, что каждое значение во внешнем ключе должно быть представ- лено один, и только один раз, в родительском ключе.

Фактически, данное значение внешнего ключа может ссылаться только к одному значению родительского ключа не предполагая обратной возможности: т.е. любое число внешних ключей может ссылать к единственному значению родительского ключа. Вы можете увидеть это в типовых таблицах наших примеров. И Hoffman и Clemens назначены к Peel, так что оба их значения внешнего ключа совпадают с одним и тем же родительским ключом, что очень хорошо. Значение внешнего ключа должно ссылаться только к одному значению родительского ключа, зато значение родительского ключа может ссылаться с помощью любого количества значений внешнего ключа. В качестве иллюстрации, значения внешнего ключа из таблицы Заказчиков, совпавшие с их родительским ключом в Продавцов таблице, показываются в Рисунке 19.1. Для удобства мы не учитывали пол не относящиеся к этому примеру.

ОГРАНИЧЕНИЕ FOREIGN KEY

SQL поддерживает справочную целостность с ограничением FOREIGN KEY. Хотя ограничение FOREIGN KEY - это нова особенность в SQL, оно еще не обеспечивает его универсальности. Кроме того, некоторые его реализации, более сложны чем другие. Эта функция должна ограничивать значения которые вы можете ввести в вашу базу данных чтобы заставить внешний ключ и родительский ключ соответствовать принципу справочной целостности. Одно из действий ограничения Внешнего Ключа - это отбрасывание значений для полей ограниченных как внешний ключ который еще не представлен в ро- дительском ключе. Это ограничение также воздействует на вашу способность изменять или удалять значения родительского ключа (мы будем обсуждать это позже в этой главе).

КАК МОЖНО ПОЛЯ ПРЕДСТАВИТЬ В КАЧЕСТВЕ ВНЕШНИХ КЛЮЧЕЙ

Вы используете ограничение FOREIGN KEY в команде CREATE TABLE (или ALTER TABLE), которая содержит поле которое вы хотите объявить внешним ключом. Вы даете им родительскому ключу на которое вы будете ссылаться внутри ограничения FOREIGN KEY. Помещение этого ограничения в команду - такое же что в для других ограничений обсужденных в предыдущей главе . Рисунок 19.1: Внешний Ключ таблицы Заказчиков с родительским ключом

Подобно большинству ограничений, оно может быть ограничением таблицы или столбца, в форме таблицы позволяющей использовать многочисленные пол как один внешний ключ.

ВНЕШНИЙ КЛЮЧ КАК ОГРАНИЧЕНИЕ ТАБЛИЦЫ

Синтаксис ограничения таблицы FOREIGN KEY: FOREIGN KEY REFERENCES [ ] Первый список столбцов - это список из одного или более столбцов таблицы, которые отделены запятыми и будут созданы или изменены этой командой. Pktable - это таблица содержащая родительский ключ. Она может быть таблицей, которая создается или изменяется текущей командой. Второй список столбцов - это список столбцов которые будут составлять родительский ключ. Списки двух столбцов должны быть совместимы, т.е.:

* Они должны иметь одинаковое число столбцов.

* В данной последовательности, первый, второй, третий, и т.д., столбцы списка столбцов внешнего ключа, должны иметь одинаковые типы данных и размеры, что и первый, второй, третий, и т.д., столбцы списка столбцов родительского ключа. Столбцы в списках обоих столбцов не должны иметь одинаковых имен, хотя мы и использовали такой способ в наших примерах чтобы делать связь более понятной.

Создадим таблицу Заказчиков с полем snum определенным в качестве внешнего ключа ссылающегося на таблицу Продавцов: CREATE TABLE Customers (cnum integer NOT NULL PRIMARY KEY cname char(10), city char(10), snum integer, FOREIGN KEY (snum) REFERENCES Salespeople (snum); Имейте в виду, что при использовании ALTER TABLE вместо CREATE TABLE, для применения ограничения FOREIGN KEY, значения которые Вы указываете во внешнем ключе и родительском ключе, должны быть в состоянии справочной целостности. Иначе команда будет отклонена. Хотя ALTER TABLE очень полезна из-за ее удобства, вы должны будете в вашей системе, по возможности каждый раз, сначала формировать структурные принципы, типа справочной целостности.

ВНЕШНИЙ КЛЮЧ КАК ОГРАНИЧЕНИЕ СТОЛБЦОВ

Вариант ограничения столбца ограничением FOREIGN KEY - по другому называется - ссылочное ограничение (REFERENCES), так как он фактически не со- держит в себе слов FOREIGN KEY, а просто использует слово REFERENCES, и далее им родительского ключа, подобно этому: CREATE TABLE Customers (cnum integer NOT NULL PRIMARY KEY, cname char(10), city char(10), snum integer REFERENCES Salespeople (snum)); Вышеупомянутое определяет Customers.snum как внешний ключ у которого родительский ключ - это Salespeople.snum. Это эквивалентно такому ограничению таблицы: FOREIGN KEY (snum) REGERENCES Salespeople (snum)

НЕ УКАЗЫВАТЬ СПИСОК СТОЛБЦОВ ПЕРВИЧНЫХ КЛЮЧЕЙM

Используя ограничение FOREIGN KEY таблицы или столбца, вы можете не указывать список столбцов родительского ключа если родительский ключ имеет ограничение PRIMARY KEY. Естественно, в случае ключей со многими полями, порядок столбцов во внешних и первичных ключах должен совпадать, и, в любом случае, принцип совместимости между двум ключами все еще применим. Например, если мы поместили ограничение PRIMARY KEY в поле snum таблицы Продавцов, мы могли бы использовать его как внешний ключ в таблице Заказчиков (подобно предыдущему примеру) в этой команде: CREATE TABLE Customers (cnum integer NOT NULL PRIMARY KEY, cname char(10), city char(10), snum integer REFERENCES Salespeople); Это средство встраивалось в язык, чтобы поощрять вас использовать первич- ные ключи в качестве родительских ключей.

КАК СПРАВОЧНАЯ ЦЕЛОСТНОСТЬ ОГРАНИЧИВАЕТ ЗНАЧЕНИЯ РОДИТЕЛЬСКОГО КЛЮЧА

Поддержание справочной целостности требует некоторых ограничений на значения, которые могут быть представлены в полях, объявленных как внешний ключ и родительский ключ. Родительский ключ должен быть структурен, чтобы гарантировать, что каждое значение внешнего ключа будет соответствовать одной указанной строке. Это означает, что он (ключ) должен быть уникальным и не содержать никаких пустых значений(NULL). Этого не достаточно для родительского ключа в случае выполнения такого требования как при объявлении внешнего ключа. SQL должен быть уверен что двойные значения или пустые значения (NULL) не были введены в родительский ключ. Следовательно вы должны убедиться, что все пол, которые используются как родительские ключи, имеют или ограничение PRIMARY KEY или ограничение UNIQUE, наподобие ограничения NOT NULL.

ПЕРВИЧНЫЙ КЛЮЧ КАК УНИКАЛЬНЫЙ ВНЕШНИЙ КЛЮЧ

Ссылка ваших внешних ключей только на первичные ключи, как мы это делали в типовых таблицах, - хороша стратеги. Когда вы используете внешние клю- чи, вы связываете их не просто с родительскими ключами на которые они ссылаются; вы связываете их с определенной строкой таблицы где этот родительс- кий ключ будет найден. Сам по себе родительский ключ не обеспечивает ника- кой информации которая бы не была уже представлена во внешнем ключе. Смысл, например, пол snum как внешнего ключа в таблице Заказчиков - это связь которую он обеспечивает, не к значению пол snum на которое он ссылается, а к другой информации в таблице Продавцов, такой например как, имена продавцов, их местоположение, и так далее. Внешний ключ - это не просто связь между двум идентичными значениями; это - связь, с помощью этих двух значений, между двум строками таблицы указанной в запросе. Это поле snum может использоваться чтобы связывать любую информацию в строке из таблицы Заказчиков со ссылочной строкой из таблицы Продавцов - например чтобы узнать - живут ли они в том же самом городе, кто имеет более длинное имя, имеет ли продавец кроме данного заказчика каких-то других заказчиков, и так далее. Так как цель первичного ключа состоит в том, чтобы идентифицировать уникальность строки, это более логичный и менее неоднозначный выбор для внешнего ключа. Для любого внешнего ключа который использует уникальный ключ как родительский ключ, вы должны создать внешний ключ который бы использовал первичный ключ той же самой таблицы для того же самого действия. Внешний ключ который не имеет никакой другой цели кроме связывания строк, напоминает первичный ключ используемый исключительно для идентификации строк, и является хорошим средством сохранить структуру вашей базы данных ясной и простой, и - следовательно создающей меньше трудностей.

ОГРАНИЧЕНИЯ ВНЕШНЕГО КЛЮЧА

Внешний ключ, в частности, может содержать только те значения которые фактически представлены в родительском ключе или пустые(NULL). Попытка ввести другие значения в этот ключ будет отклонена. Вы можете объявить внешний ключ как NOT NULL, но это необязательно, и в большинстве случаев, нежелательно. Например, предположим, что вы вводи- те заказчика не зная заранее, к какому продавцу он будет назначен. Лучший выход в этой ситуации, будет если использовать значение NOT NULL, которое должно быть изменено позже на конкретное значение.

ЧТО СЛУЧИТСЯ, ЕСЛИ ВЫ ВЫПОЛНИТЕ КОМАНДУ МОДИФИКАЦИИ

Давайте условимся, что все внешние ключи созданные в наших таблицах приме- ров, объявлены и предписаны с ограничениями внешнего ключа, следующим образом: CREATE TABLE Salespeople (snum integer NOT NULL PRIMARY KEY, sname char(10) NOT NULL, city char(10), comm decimal); CREATE TABLE Customers (cnum integer NOT NULL PRIMARY KEY, cname char(10) NOT NULL, city char(10), rating integer, snum integer, FOREIGN KEY (snum) REFERENCES Salespeople, UNIQUE (cnum, snum) ; CREATE TABLE Orders (cnum integer NOT NULL PRIMARY KEY, amt decimal, odate date NOT NULL, cnum integer NOT NULL snum integer NOT NULL FOREIGN KEY (cnum, snum) REFERENCES CUSTOMERS (cnum, snum);

ВКЛЮЧЕНИЕ ОПИСАНИЙ ТАБЛИЦЫ

Имеется несколько атрибутов таких определений о которых нужно поговорить. Причина по которой мы решили сделать пол cnum и snum в таблице Порядков, единым внешним ключом - это гарантия того, что для каждого заказчика содержащегося в порядках, продавец кредитующий этот порядок - тот же что и указанный в таблице Заказчиков. Чтобы создать такой внешний ключ, мы бы- ли бы должны поместить ограничение таблицы UNIQUE в два пол таблицы Заказчиков, даже если оно необязательно для самой этой таблицы. Пока поле cnum в этой таблица имеет ограничение PRIMARY KEY, оно будет уникально в любом случае, и следовательно невозможно получить еще одну комбинацию пол cnum с каким-то другим полем. Создание внешнего ключа таким способом поддерживает целостность базы данных, даже если при этом вам будет запрещено внутреннее прерывание по ошибке и кредитовать любого продавца, иного чем тот который назначен именно этому заказчику.

С точки зрения поддержания целостности базы данных, внутренние прерывания (или исключения) конечно же нежелательны. Если вы их допускаете и в то же врем хотите поддерживать целостность вашей базы данных, вы можете объявить пол snum и cnum в таблице Порядков независимыми внешними ключами этих полей в таблице Продавцов и таблице Заказчиков, соответственно. Фактически, использование пол snum в таблице Порядков, как мы это делали, необязательно, хотя это полезно было сделать для разнообразия. Поле cnum связывая каждый порядок заказчиков в таблице Заказчиков, в таблице Порядков и в таблице Заказчиков, должно всегда быть общим чтобы находить правильное поле snum для данного порядка (не разрешая никаких исключений). Это означает что мы записываем фрагмент информации - какой заказчик назначен к какому продавцу - дважды, и нужно будет выполнять дополнительную работу чтобы удостовериться, что обе версии согласуются. Если мы не имеем ограничения внешнего ключа как сказано выше, эта ситуация будет особенно проблематична, потому что каждый порядок нужно будет проверять вручную (вместе с запросом), чтобы удостовериться что именно соответствующий продавец кредитовал каждую соответствующую продажу. Наличие такого типа информационной избыточности в вашей базе данных, называется деморализация (denormalization), что нежелательно в идеальной реляционной базе данных, хотя практически и может быть разрешена. Деморализация может заставить некоторые запросы выполняться быстрее, поскольку запрос в одной таблице выполняется всегда значительно быстрее чем в объединении.

ДЕЙСТВИЕ ОГРАНИЧЕНИЙ

Как такие ограничения воздействуют на возможность и невозможность Вами использовать команды модификации DML? Для полей, определен- ных как внешние ключи, ответ довольно простой: любые значения которые вы помещаете в эти пол с командой INSERT или UPDATE должны уже быть представлены в их родительских ключах. Вы можете помещать пустые(NULL) значения в эти пол, несмотря на то что значения NULL не позволительны в родительских ключах, если они имеют ограничение NOT NULL. Вы можете удалять (DELETE) любые строки с внешними ключами не используя роди- тельские ключи вообще.

Поскольку затронут вопрос об изменении значений родительского ключа, ответ, по определению ANSI, еще проще, но возможно несколько более ограничен: любое значение родительского ключа ссылаемого с помощью значения внешнего ключа, не может быть удалено или изменено. Это означает, например, что вы не можете удалить заказчика из таблицы Заказчиков пока он еще имеет порядки в таблице Порядков. В зависимости от того, как вы используете эти таблицы, это может быть или желательно или хлопотно. Однако - это конечно лучше чем иметь сис- тему, которая позволит вам удалить заказчика с текущими порядками и оставить таблицу Порядков ссылающейся на несуществующих заказчиков. Смысл этой системы ограничения в том, что создатель таблицы Порядков, используя таблицу Заказчиков и таблицу Продавцов как родительские клю- чи может наложить значительные ограничения на действия в этих таблицах. По этой причине, вы не сможете использовать таблицу которой вы не распоряжаетесь (т.е. не вы ее создавали и не вы являетесь ее владельцем), по- ка владелец(создатель) этой таблицы специально не передаст вам на это право (что объясняется в Главе 22). Имеются некоторые другие возможные действия изменения родительс- кого ключа, которые не являются частью ANSI, но могут быть найдены в некоторых коммерческих программах. Если вы хотите изменить или удалить текущее ссылочное значение родительского ключа, имеется по существу три возможности:

  • Вы можете ограничить, или запретить, изменение (способом ANSI), обозначив, что изменения в родительском ключе - ограничены.
  • Вы можете сделать изменение в родительском ключе и тем самым сделать изменения во внешнем ключе автоматическим, что называется - каскадным изменением.
  • Вы можете сделать изменение в родительском ключе, и установить внешний ключ в NULL, автоматически (полагая, что NULLS разрешен во внешнем ключе), что называется - пустым изменением внешнего ключа.

    Даже в пределах этих трех категорий, вы можете не захотеть обрабатывать все команды модификации таким способом. INSERT, конечно, к делу не относится. Он помещает новые значения родительского ключа в таблицу, так что ни одно из этих значений не может быть вызвано в данный момент. Однако, вы можете захотеть позволить модификациям быть каскадными, но без удалений, и наоборот. Лучшей может быть ситуация которая позволит вам определять любую из трех категорий, независимо от команд UPDATE и DELETE. Мы будем следовательно ссылаться на эффект модификации (update effects) и эффект удаления (delete effects), которые определяют, что случится если вы выполните коман- ды UPDATE или DELETE в родительском ключе. Эти эффекты, о которых мы говорили, называются: Ограниченные (RESTRICTED) изменения, Каскадируемые (CASCADES) изменения, и Пустые (NULL) изменения. Фактические возможности вашей системы должны быть в строгом стандар- те ANSI - это эффекты модификации и удаления, оба, автоматически ограниченные - для более идеальной ситуации описанной выше. В качестве иллюстрации, мы покажем несколько примеров того, что вы можете делать с полным набором эффектов модификации и удаления. Конечно, эффекты модификации и удаления, являющиеся нестандартными средствами, испытывают недостаток в стандартном госинтаксисе. Синтаксис который мы используем здесь, прост в написании и будет служить в дальнейшем для иллюстрации функций этих эффектов.

    Для полноты эксперимента, позволим себе предположить что вы имеете причи- ну изменить поле snum таблицы Продавцов в случае, когда наша таблица Продавцов изменяет разделы. (Обычно изменение первичных ключей это не то что мы рекомендуем делать практически. Просто это еще один из доводов для имеющихся первичных ключей которые не умеют делать ничего другого кроме как, действовать как первичные ключи: они не должны изменяться.) Когда вы изменяете номер продавца, вы хотите чтобы были сохранены все его заказчики. Однако, если этот продавец покидает свою фирму или компанию, вы можете не захотеть удалить его заказчиков, при удалении его самого из базы данных. Взамен, вы захотите убедиться, что заказчики назначены кому-нибудь еще. Чтобы сделать это вы должны указать UPDATE с Каскадируемым эффектом, и DELETE с Ограниченным эффектом. CREATE TABLE Customers (cnum integer NOT NULL PRIMARY KEY, cname char(10) NOT NULL, city char(10), rating integer, snum integer REFERENCES Salespeople, UPDATE OF Salespeople CASCADES, DELETE OF Salespeople RESTRICTED); Если вы теперь попробуете удалить Peel из таблицы Продавцов, команда будет не допустима, пока вы не измените значение пол snum заказчиков Hoffman и Clemens для другого назначенного продавца. С другой стороны, вы можете изменить значение пол snum для Peel на 1009, и Hoffman и Clemens будут также автоматически изменены.

    Третий эффект - Пустые (NULL) изменения. Бывает, что когда продавцы оставляют компанию, их текущие порядки не передаются другому продавцу. С другой стороны, вы хотите отменить все порядки автоматически для заказ- чиков, чьи счета вы удалите. Изменив номера продавца или заказчика можно просто передать их ему. Пример ниже показывает, как вы можете создать таблицу Порядков с использованием этих эффектов. CREATE TABLE Orders (onum integer NOT NULL PRIMARY KEY, amt decimal, odate date NOT NULL cnum integer NOT NULL REFERENCES Customers snum integer REFERENCES Salespeople, UPDATE OF Customers CASCADES, DELETE OF Customers CASCADES, UPDATE OF Salespeople CASCADES, DELETE OF Salespeople NULLS); Конечно, в команде DELETE с эффектом Пустого изменения в таблице Продавцов, ограничение NOT NULL должно быть удалено из пол snum.

    ВНЕШНИЕ КЛЮЧИ КОТОРЫЕ ССЫЛАЮТСЯ ОБРАТНО К ИХ ПОДЧИНЕННЫМ ТАБЛИЦАМ

    Как было упомянуто ранее, ограничение FOREIGN KEY может представить им этой частной таблице, как таблицы родительского ключа. Далеко не бу- дучи простой, эта особенность может пригодиться. Предположим, что мы имеем таблицу Employees с полем manager(администратор). Это поле содер- жит номера каждого из служащих, некоторые из которых являются еще и ад- министраторами. Но так как каждый администратор - в то же врем остается служащим, то он естественно будут также представлен в этой таблице. Давайте создадим таблицу, где номер служащего (столбец с именем empno), объявляется как первичный ключ, а администратор, как внешний ключ, будет ссылаться на нее: CREATE TABLE Employees (empno integer NOT NULL PRIMARY KEY, name char(10) NOT NULL UNIOUE, manager integer REFERENCES Employees); (Так как внешний ключ это ссылаемый первичный ключ таблицы, список столбцов может быть исключен.) Имеется содержание этой таблицы: EMPNO NAME MANAGER _____ ________ _______ 1003 Terrence 2007 2007 Atali NULL 1688 McKenna 1003 2002 Collier 2007 Как вы можете видеть, каждый из них(но не Atali) , ссылается на другого служащего в таблице как на своего администратора. Atali, имеющий наивысший номер в таблице, должен иметь значение установленное в NULL. Это дает другой принцип справочной целостности. Внешний ключ, который ссылается обратно к частной таблице, должен позволять значения = NULL. Если это не так, как бы вы могли вставить первую строку? Даже если эта первая строка ссылается к себе самой, значение родительского ключа должно уже быть установлено, когда вводится значение внешнего клю- ча. Этот принцип будет верен, даже если внешний ключ ссылается обратно к частной таблице не напрямую а с помощью ссылки к другой таблице, которая затем ссылается обратно к таблице внешнего ключа. Например, предположим, что наша таблица Продавцов имеет дополнительное поле которое ссылается на таблицу Заказчиков, так, что каждая таблица ссылается на другую, как показано в следующем операторе CREATE TABLE: CREATE TABLE Salespeople (snum integer NOT NULL PRIMARY KEY, sname char(10) NOT NULL, city char(10), comm declmal, cnum integer REFERENCES Customers); CREATE TABLE Customers (cnum integer NOT NULL PRIMARY KEY, cname char(10) NOT NULL, city char(10), rating integer, snum integer REFERENCES Salespeople); Это называется - перекрестной ссылкой. SQL поддерживает это теоретически, но практически это может составить проблему. Люба таблица из этих двух, созданная первой является ссылоч- ной таблицей которая еще не существует для другой. В интересах обеспечения перекрестной ссылки, SQL фактически позволяет это, но никакая таблица не будет пригодна для использования пока они обе находятся в процессе создания. С другой стороны, если эти две таблицы создаются различными пользователями, проблема становится еще более трудной. Перекрестна ссылка может стать полезным инструментом, но она не без неоднозначности и опасностей. Предшествующий пример, например, не сов- сем пригоден для использования: потому что он ограничивает продавца оди- ночным заказчиком, и кроме того совсем необязательно использовать перекрестную ссылку чтобы достичь этого. Мы рекомендуем чтобы вы были осторожны в его использовании и анализировали, как ваши программы управ- лют эффектами модификации и удаления а также процессами привилегий и диалоговой обработки запросов перед тем как вы создаете перекрестную систему справочной целостности. (Привилегии и диалоговая обработка запросов будут обсуждаться, соответственно, в Главах 22 И .)

    РЕЗЮМЕ

    Теперь вы имеете достаточно хороше управление справочной целостностью. Основная идея в том, что все значения внешнего ключа ссылаются к указан- ной строке родительского ключа. Это означает, что каждое значение внешне- го ключа должно быть представлено один раз, и только один раз, в родитель- ском ключе. Всякий раз, когда значение помещается во внешний ключ, роди- тельский ключ проверяется, чтобы удостовериться, что его значение представлено; иначе, команда будет отклонена. Родительский ключ должен иметь Первичный Ключ (PRIMARY KEY) или Уникальное (UNIQUE) ограничение, гарантирующее, что значение не будет представлено более чем один раз. Попытка изменить значение родительского ключа, которое в настоящее врем представлено во внешнем ключе, будет вообще отклонена. Ваша система может, однако, предложить вам выбор, чтобы получить значение внешнего ключа установленного в NULL или для получения нового значения ро- дителького ключа, и указания какой из них может быть получен независимо для команд UPDATE и DELETE. Этим завершается наше обсуждение команды CREATE TABLE. Далее мы представим вас другому типу команды - CREATE. В Главе 20 , вы обучитесь представлению объектов данных которые выглядят и действуют подобно таблице, но в действительности являются результатами запросов. Некоторые функции ограничений могут также выполняться представлениями, так что вы сможете лучше оценить вашу потребность к ограничениям, после того, как вы прочитаете следующие три главы.

    РАБОТА С SQL

    1. Создайте таблицу с именем Cityorders. Она должна содержать такие же пол onum, amt, и snum что и таблица Порядков, и такие же пол cnum и city что и таблица Заказчиков, так что порядок каждого заказчика будет вводиться в эту таблицу вместе с его городом. Поле оnum будет первичным ключом Cityorders. Все пол в Cityorders должны иметь ограничения при сравнении с таблицами Заказчиков и Порядков. Допускается, что родительские ключи в этих таблицах уже имеют соответствующие ограничения.

    2. Усложним проблему. Переопределите таблицу Порядков следующим образом: добавьте новый столбец с именем prev, который будет идентифицирован для каждого порядка, поле onum предыдущего порядка для этого текущего заказчика. Выполните это с использованием внешнего ключа ссылающегося на саму таблицу Порядков. Внешний ключ должен ссылаться также на поле cnum заказчика, обеспечивающего определенную предписанную связь между текущим порядком и ссылаемым.

    (См. Приложение A для ответов.)

  • InterBase могут использовать следующие виды ограничений:
    • PRIMARY KEY - первичный ключ таблицы.
    • UNIQUE - уникальный ключ таблицы.
    • FOREIGN KEY - внешний ключ , обеспечивает ссылку на другую таблицу и гарантирует ссылочную целостность между родительской и дочерней таблицами .

    Примечание о терминологии

    Если вы похожи на автора данного курса в том, что любите искать ответы на интересующий вас вопрос комплексно, в разных трудах разных авторов, то вы не могли не заметить некоторую путаницу в определениях главная (master) -> подчиненная (detail) таблицы. Напомним, что главную таблицу часто называют родительской, а подчиненную - дочерней.

    Связано это, вероятно, с тем, как интерпретируются эти определения в локальных и SQL -серверных СУБД .

    В локальных СУБД главной называется та таблица , которая содержит основные данные, а подчиненной - дополнительные. Возьмем, к примеру, три связанные таблицы. Первая содержит данные о продажах, вторая - о товарах и третья - о покупателях:


    Рис. 18.1.

    Здесь основные сведения хранятся в таблице продаж, следовательно, она главная (родительская). Дополнительные сведения хранятся в таблицах товаров и покупателей, значит они дочерние. Это и понятно: одна дочь не может иметь двух биологических матерей, зато одна мать вполне способна родить двух дочерей.

    Но в SQL -серверах баз данных имеется другое определение связей: когда одно поле в таблице ссылается на поле другой таблицы, оно называется внешним ключом . А поле , на которое оно ссылается, называется родительским или первичным ключом . Таблицу, которая имеет внешний ключ (ссылку на запись другой таблицы) нередко называют дочерней, а таблицу с родительским ключом - родительской. Еще в определении связей говорят, что родитель может иметь только одну уникальную запись , на которую могут ссылаться несколько записей дочерней таблицы .

    Так что в приведенном выше примере таблица продаж имеет два внешних ключа: идентификатор товара, и идентификатор покупателя. А обе таблицы в правой части рисунка имеют родительский ключ " Идентификатор ". Поскольку один покупатель или товар могут неоднократно встречаться в таблице продаж, то получается, что обе таблицы в правой части рисунка - родители, а таблица слева - дочерняя. Поскольку сейчас мы изучаем InterBase - SQL сервер БД , этими определениями мы и будем руководствоваться в последующих лекциях. Чтобы далее не ломать голову над этой путаницей, сразу договоримся: дочерняя таблица имеет внешний ключ (FOREIGN KEY ) на другую таблицу.

    PRIMARY KEY

    PRIMARY KEY - первичный ключ , является одним из основных видов ограничений в базе данных. Первичный ключ предназначен для однозначной идентификации записи в таблице, и должен быть уникальным. Первичные ключи PRIMARY KEY находятся в таблицах, которые принято называть родительскими (Parent ). Не стоит путать первичный ключ с первичными индексами локальных баз данных, первичный ключ является не индексом, а именно ограничением. При создании первичного ключа InterBase автоматически создает для него уникальный индекс . Однако если мы создадим уникальный индекс , это не приведет к созданию ограничения первичного ключа . Таблица может иметь только один первичный ключ PRIMARY KEY .

    Предположим, имеется таблица со списком сотрудников. Поле "Фамилия" может содержать одинаковые значения (однофамильцы), поэтому его нельзя использовать в качестве первичного ключа. Редко, но встречаются однофамильцы, которые вдобавок имеют и одинаковые имена. Еще реже, но встречаются полные тезки, поэтому даже все три поля "Фамилия" + "Имя" + "Отчество" не могут гарантировать уникальности записи, и не могут быть первичным ключом. В данном случае выход , как и прежде, в том, чтобы добавить поле - идентификатор , которое содержит порядковый номер данного лица. Такие поля обычно делают автоинкрементными (об организации автоинкрементных полей поговорим на следующих лекциях). Итак,

    Первичный ключ - это одно или несколько полей в таблице, сочетание которых уникально для каждой записи .

    Если в первичный ключ входит единственный столбец (как чаще всего и бывает), спецификатор PRIMARY KEY ставится при определении столбца :

    CREATE TABLE Prim_1(Stolbec1 INT NOT NULL PRIMARY KEY, Stolbec2 VARCHAR(50))

    Если первичный ключ строится по нескольким столбцам, то спецификатор ставится после определения всех полей:

    CREATE TABLE Prim_2(Stolbec1 INT NOT NULL, Stolbec2 VARCHAR(50) NOT NULL, PRIMARY KEY (Stolbec1, Stolbec2))

    Как видно из примеров, первичный ключ обязательно должен иметь ограничение столбца (столбцов) NOT NULL .

    UNIQUE

    UNIQUE - уникальный ключ . Спецификатор UNIQUE указывает, что все значения данного поля должны быть уникальными, в связи с этим такие поля также не могут содержать значения NULL . Можно сказать, что уникальный ключ UNIQUE является альтернативным вариантом первичного ключа, однако имеются различия. Главное различие в том, что первичный ключ должен быть только один, тогда как уникальных ключей может быть несколько. Кроме того, ограничение UNIQUE не может быть построено по тому же набору столбцов, который был использован для ограничения PRIMARY KEY или другого UNIQUE . Уникальные ключи, как и первичные, находятся в таблицах, которые являются родительскими по отношению к другим таблицам.

    Столбец, объявленный с ограничением UNIQUE , как и первичный ключ , может применяться для обеспечения ссылочной целостности между родительской и дочерней таблицами . При этом внешний ключ дочерней таблицы будет ссылаться на это поле (поля). Как и в случае первичного ключа, при создании уникального ключа, для него автоматически будет создан уникальный индекс . Но не наоборот. Пример создания таблицы с одним первичным и двумя уникальными ключами:

    CREATE TABLE Prim_3(Stolbec1 INT NOT NULL PRIMARY KEY, Stolbec2 VARCHAR(50) NOT NULL UNIQUE, Stolbec3 FLOAT NOT NULL UNIQUE)

    FOREIGN KEY

    FOREIGN KEY - внешний ключ . Это очень мощное средство для обеспечения ссылочной целостности между таблицами, которое позволяет не только следить за наличиями правильных ссылок, но и автоматически управлять ими. Внешние ключи содержатся в таблицах, которые являются дочерними (Child ) по отношению к другим таблицам. Ссылочная целостность обеспечивается именно внешним ключом, который ссылается на первичный или

    Если заметили ошибку, выделите фрагмент текста и нажмите Ctrl+Enter
    ПОДЕЛИТЬСЯ: