Windows. Вирусы. Ноутбуки. Интернет. Office. Утилиты. Драйверы

Слайд 1

Описание слайда:

Слайд 2

Описание слайда:

Слайд 3

Описание слайда:

Слайд 4

Описание слайда:

Слайд 5

Описание слайда:

Слайд 6

Описание слайда:

Слайд 7

Описание слайда:

Берут лёгкую алюминиевую рамку 2 прямоугольной формы, наматывают на неё катушку из тонкого провода. Рамку крепят на двух полуосях О и О", к которым прикреплена также стрелка прибора 4. Ось удерживается двумя тонкими спиральными пружинами 3. Силы упругости пружин, возвращающие рамку к положению равновесия в отсутствие тока, подобраны такими, чтобы были пропорциональными углу отклонения стрелки от положения равновесия. Катушку помещают между полюсами постоянного магнита М с наконечниками формы полого цилиндра. Внутри катушки располагают цилиндр 1 из мягкого железа. Такая конструкция обеспечивает радиальное направление линий магнитной индукции в области нахождения витков катушки (см рисунок). В результате при любом положении катушки силы, действующие на неё со стороны магнитного поля, максимальны и при неизменной силе тока постоянны. Берут лёгкую алюминиевую рамку 2 прямоугольной формы, наматывают на неё катушку из тонкого провода. Рамку крепят на двух полуосях О и О", к которым прикреплена также стрелка прибора 4. Ось удерживается двумя тонкими спиральными пружинами 3. Силы упругости пружин, возвращающие рамку к положению равновесия в отсутствие тока, подобраны такими, чтобы были пропорциональными углу отклонения стрелки от положения равновесия. Катушку помещают между полюсами постоянного магнита М с наконечниками формы полого цилиндра. Внутри катушки располагают цилиндр 1 из мягкого железа. Такая конструкция обеспечивает радиальное направление линий магнитной индукции в области нахождения витков катушки (см рисунок). В результате при любом положении катушки силы, действующие на неё со стороны магнитного поля, максимальны и при неизменной силе тока постоянны.

Слайд 8

Описание слайда:

Слайд 9

Описание слайда:

Слайд 10

Описание слайда:

Слайд 11

краткое содержание других презентаций

«Электрический ток в различных средах» - Электрический ток в газах. Электрический ток в полупроводниках. Закон Фарадея. Урок в 8 классе. Полупроводниковые диоды, транзисторы. Самостоятельные газовые разряды: искровой, дуговой, коронный, тлеющий. Односторонняя проводимость на границе полупроводников n-типа р-типа. Полупроводники n-типа, полупроводники р-типа. Электрический ток в вакууме. Электрический ток в металлах. Гальванопластика. Вакуумные диоды.

«Турбина и ДВС» - Двигатель внутреннего сгорания – очень распространенный вид теплового двигателя. Мощные двигатели внутреннего сгорания устанавливают на речных и морских судах. Один ход поршня совершается за пол-оборота коленчатого вала. Двигатель внутреннего сгорания. Цикл ДВС. Третий такт ДВС. Поэтому такие двигатели называют четырёхтактными. 1. Диск 2. Вал 3. Лопатки 4. Сопло.

«Законы постоянного тока» - Составь рассказ по картинкам. Лабораторная работа. Исследование строения гальванического элемента. Р. в Кенигсберге. Двигатели асинхронные с короткозамкнутым ротором. III1824 – 17.Х1887)- немецкий физик, член Берлинской АН (1875). Личные цели. Домашний эксперимент. «Исследование последовательного соединения проводников». Содержание. Историческая справка.

«Способы изменения внутренней энергии» - Способы изменения внутренней энергии тела. 1.Какое движение называют тепловым? Урок физики в 8 классе. T ? ? v молекул?. Зависимость внутренней энергии тела от температуры тела. T ? ? v молекул?. Зависимость скорости движения молекул от температуры тела. 3. Какую энергию называют внутренней? Еп зависит от расстояния между молекулами (агрегатного состояния вещества).

«Физика в ванной» - С холодной водой подобных неприятностей не случается? Проблемные вопросы: Для испарения воды требуется тепло. Выполнили: Рочева Анжелика Семяшкина Елена Ученицы 8 «в». Почему в ванной комнате ваш голос звучит громче? Почему в ванной комнате ваш голос звучит громче? Цель: Как измерить объем своего тела? Почему когда моешься в душе стенки и зеркала запотевают?

«Механические волны 9 класс» - Длина волны, ?: ? = v ? Т или? = v: ? [?] = м. Чему равна длина волны? Э н е р г и я. Механические волны -. Ф и з и к а 9 класс. Объясните ситуацию: Источник совершает колебания вдоль оси OY перпендикулярно ОХ. Что «движется» в волне? Источник совершает колебания вдоль оси ОХ. Механизм колебаний. Сначала-блеск, За блеском-треск, За треском-плеск. Модель упругой среды. В. Энергию.

Описание презентации по отдельным слайдам:

1 слайд

Описание слайда:

2 слайд

Описание слайда:

Аналоговыми измерительными приборами называют приборы, показания которых являются непрерывной функцией изменений измеряемой величины.

3 слайд

Описание слайда:

Аналоговый электроизмерительный прибор - это, в первую очередь, показывающий прибор, т. е. прибор, допускающий отсчитывание показаний. Для этого у всех аналоговых электроизмерительных приборов, независимо от назначения и от разновидности применяемого в нем измерительного механизма любой прибор содержит общие для всех аналоговых приборов узлы и элементы: отсчетное устройство, состоящее из шкалы, расположенной на циферблате прибора, и указателя устройства по созданию противодействующего и успокаивающего моментов опорное устройство.

4 слайд

Описание слайда:

Измерительная цепь Измерительный механизм Отсчетное устройство Измерительная цепь является преобразователем из­меряемой величины х в некоторую промежуточную электрическую величину у (ток, напряжение), функционально связанную с измеряемой величиной х, т. е. y=f1(x). Электрическая величина у, которой является ток или напряжение, непосредственно воздействует на измерительный механизм (входная величина механизма). Измерительная цепь содержит в себе сопротивления, индуктивности, емкости и другие элементы. Измерительный механизм является преобразователем подведенной к нему электрической энергии в механическую энергию, необходимую для перемещения его подвижной части относительно неподвижной, т. е. α = f2(y). Входные величины создают механические силы, действующие на подвижную часть. Обычно в механизмах подвижная часть может только поворачиваться вокруг оси, поэтому механические силы, действующие на меха­низм, создают момент М. Этот момент называется вращающим моментом М=Wм /α., где Wм – энергия магнитного поля Отсчётное устройство - указатель (стрелка), перо, жёстко связанное с подвижной частью измерительного механизма и неподвижной шкалой (бумажным носителем, совмещающим функции шкалы и носителя регистрируемой информации). Подвижная часть преобразует угловое перемещение механизма в перемещение указателя, при этом величина α отсчитывается в единицах деления шкалы. X Y α

5 слайд

Описание слайда:

Общими элементами аналоговых электромеханических приборов являются: корпус (из металла или пластмассы), неподвижная и подвижная части (катушка, ферромагнитный магнитопровод или алюминиевый вращающийся диск), противодействующее устройство (спиральная или ленточная пружина), успокоитель (жидкостный или магнитоиндукционный), корректор нулевого положения и отсчетное устройство (шкала и указатель).

6 слайд

Описание слайда:

7 слайд

Описание слайда:

В зависимости от физических явлений, положенных в основу создания вращающего момента, или, другими словами, от способа преобразования электромагнитной энергии, подводимой к прибору, в механическую энергию перемещения подвижной части электромеханические приборы делятся на следующие основные системы: магнитоэлектрические, электромагнитные, электродинамические, ферродинамические, электростатические, индукционные.

8 слайд

Описание слайда:

Принцип действия ИМ различных групп приборов основан на взаимодействии: магнитоэлектрических ИМ - магнитных полей постоянного магнита и проводника с током; электро­магнитных - магнитного поля, создаваемого проводником с током, и ферромагнитного сердечника; электродинамических (и ферродинамических) - магнитных полей двух систем проводников с токами; электростатических - двух систем заряженных электродов; индукционных - переменного магнитного поля проводника с током и индуцирован­ных этим полем вихревых токов в по­движном элементе -в результате создается вращающий момент МВР.

9 слайд

Описание слайда:

В зависимости от способа создания противодействующего момента Мa электромеханические СИ подразделяют- ся на две группы: - с механическим противодействующим моментом; - с электрическим противодействующим моментом (логометры).

10 слайд

Описание слайда:

Логометр - электроизмерительный прибор для измерения отношения сил двух электрических токов. Подвижная часть выполнена в виде двух рамок, расположенных перпендикулярно. Когда по рамке логометра протекает ток, то при взаимодействии с магнитным полем постоянного магнита эллиптической формы (неподвижной частью логометра), создаётся вращающий момент, который передвигает стрелку прибора. Когда токи в обеих рамках равны, их вращающие моменты равны, стрелка прибора занимает нулевое положение. Если токи различны, подвижная часть прибора перемещается таким образом, что рамка с большим током оказывается в положении с большим зазором постоянного магнита (из-за его эллиптичности). В результате вращающий момент, создаваемый рамкой, уменьшается и становится равным вращающему моменту рамки с меньшим током. Логометр обычно применяется в приборах для измерения сопротивления, индуктивности, ёмкости, температуры. Логометр - это прибор, в котором нет спиральных пружин, создающих противодействующий момент при повороте стрелки, и показания которых не зависят от величины тока, а зависят от кратного отношения токов в катушках. Распространены логометры магнитоэлектрической, электродинамической, ферродинамической, электромагнитной системы. Например, логометром является магнитоэлектрический мегомметр, прибор для измерения температуры в комплекте с термометром сопротивления и др.

11 слайд

Описание слайда:

12 слайд

Описание слайда:

Магнитоэлектрические амперметры и вольтметры являются основными измерительными приборами в цепях постоянного тока Приборы магнитоэлектрической системы основываются на принципе взаимодействия тока катушки (рамки с током) и магнитного поля постоянного магнита. Неподвижная часть состоит из постоянного магнита 1, его полюсных наконечников 2 и неподвижного сердечника 3. В зазоре между полюсными наконечниками и сердечником существует сильное магнитное поле. Подвижная часть измерительного механизма состоит из легкой рамки 4, обмотка которой навивается на алюминиевый каркас, и двух полуосей 5, неподвижно связанных с каркасом рамки. Концы обмотки припаяны к двум спиральным пружинам 6, через которые в рамку подводится измеряемый ток. К рамке прикреплены стрелка 7 и противовесы 8. В зазоре между полюсными наконечниками и сердечником устанавливается рамка. Ее полуоси вставляются в стеклянные или агатовые подшипники. При прохождении тока по обмотке рамки, последняя стремится повернуться, но ее свободному повороту противодействуют спиральные пружины. И тому углу, на который рамка все же развернется, оказывается, соответствует определенная сила тока, который протекает по обмотке рамки. Иными словами, угол поворота рамки (стрелки) пропорционален силе тока. У амперметров и вольтметров измерительные механизмы в принципе одинаковы. Их отличие заключается лишь в электрическом сопротивлении рамок. У амперметра сопротивление рамки значительно меньше, чем у вольтметра.

13 слайд

Описание слайда:

При изменении направления тока изменяется направление вращающего момента (определяемое прави­лом левой руки). При включении прибора магнитоэлектрической системы в цепь переменного тока на катушку действуют быстро изменяющиеся по значению и направлению механические силы, среднее значение которых равно нулю. В результате стрелка прибора не будет отклоняться от нулевого положения. Поэтому эти приборы нельзя применять непосредственно для измерений в цепях переменного тока. Успокоение (демпфирование) стрелки в приборах магнитоэлектрической системы происходит благодаря тому, что при перемещении алюминиевой рамки в магнитном поле постоянного магнита NS в ней индуктируются вихревые токи. В результате взаимодействия этих токов с магнитным полем возникает момент, действующий на рамку в направлении, противополож­ном ее перемещению, вызывая быстрое успокоению колебаний рамки.

14 слайд

Описание слайда:

1) с подвижной катушкой и неподвижным магнитом; 2) с подвижным магнитом и неподвижной катушкой. с внешним магнитом с внутренним магнитом условное обозначение 1 – неподвижный постоянный магнит; 2 - магнитопровод; 3- сердечник; 4 – рамка; 5 – пружина; 6- стрелка

15 слайд

Описание слайда:

16 слайд

Описание слайда:

Достоинства: большая чувствительность, высокая точность, равномерная шкала, малое собственное потребление мощности, малое влияние внешних магнитных полей благодаря сильному собственному магнитному полю. Недостатки: сложность конструкции, высокая стоимость, непригодность к работе в цепях переменного тока чувствительность к перегрузкам и изменениям тока.

17 слайд

Описание слайда:

Применение: в качестве амперметров и вольт­метров постоянного тока с преде­лами измерений от наноампер до килоампер и от долей милливоль­та до киловольт, гальванометров постоянного тока, гальваномет­ров переменного тока и осциллографических гальванометров; в сочетании с различного рода преобразователями переменного тока в постоянный они используются для измерений в цепях переменного тока.

18 слайд

Описание слайда:

Подготовить презентации: Магнитоэлектрические гальванометры Магнитоэлектрические логометры Магнитоэлектрические омметры Магнитоэлектрические амперметры и вольтметры

19 слайд

Описание слайда:

Приборы электромагнитной системы работают на принципе втягивания металлического якоря в катушку, когда по ней проходит электрический ток. Принцип работы приборов электромагнитной системы основан на взаимодействии магнитного поля, созданного неподвижной катушкой, по обмотке которой протекает измеряемый ток, с одним или несколькими ферромагнитными сердечниками, укрепленными на оси. Неподвижная катушка 3 представляет собой каркас с навитой изолированной медной лентой. Когда по катушке протекает измеряемый ток, в ее плоской щели создается магнитное поле. Сердечник 5 со стрелкой 4 укреплен на оси 1. Магнитное поле катушки намагничивает сердечник и втягивает его во внутрь щели, поворачивая ось со стрелкой. Спиральная пружина 2 создает противодействующий момент Мпр 1 – ось 2 – спиральная пружина 3 – катушка 4 – стрелка 5 – сердечник 6 - успокоитель

20 слайд

Описание слайда:

Преимущества простота конструкции, способность измерять постоянные и переменные токи, способность выдерживать большие перегрузки, невысокая стоимость. Недостатки влияние на показания приборов внешних магнитных полей, неравномерная шкала (квадратичная, т.е.сжата в начале и растянута в конце), малая чувствительность, невысокая точность, большое собственное потребление мощности.

21 слайд

Описание слайда:

Приборы ЭМ системы применяют в основном как щитовые амперметры и вольтметры переменного тока промышленной частоты класса точности 1,0 и более низких классов для измерений в цепях переменного тока, в переносных многопредельных приборах класса точности 0,5.

22 слайд

Назначение КИПКонтрольно-измерительные
приборы предназначены для
контроля параметров,
характеризующих работу
автомобиля в целом и отдельных
его агрегатов.

Требования к КИП

Информативность - оценивается временем,
необходимым для правильного считывания
информации или количеством ошибок в
считывании информации при ограниченном
времени считывания.
Малая чувствительность к пульсациям и
изменению напряжения в бортовой сети
автомобиля.
Устойчивость к вибрации, перепадам
температуры, воздействию агрессивной
окружающей среды.

Классификация КИП

1. По способу отображения информации
контрольно-измерительные приборы делятся на:
◦ указывающие;
◦ сигнализирующие.
Указывающие приборы имеют шкалу, на которой
указываются значения измеряемого параметра.
Сигнализирующие приборы информируют о
критическом значении измеряемого параметра, о
функциональном состоянии узла или агрегата
автомобиля с помощью звукового или светового
сигнала.

Классификация КИП

2. По конструктивному исполнению приборы
делятся на:
механические;
электрические;
◦ магнитоэлектрической,
◦ электромагнитной,
◦ импульсной систем.
электронные.

Классификация КИП

3. По назначению контрольно-измерительные
приборы подразделяются на:
измерители температуры (термометры),
измерители давления (манометры),
измерители уровня топлива,
измерители зарядного режима АКБ (амперметры),
измерители скорости автомобиля и пройденного
пути (спидометры, одометры),
измерители частоты вращения двигателя
(тахометры),
эконометры,
тахографы.

Контрольно-измерительные приборы

Любой КИП состоит из двух основных
узлов: датчика и указателя.
Датчик преобразует измеряемую
физическую величину в электрическую
величину, расположен на
контролируемом агрегате.
Указатель преобразует электрическую
величину в угол отклонения стрелки,
расположен на панели приборов.

Термометры

Для замера температуры на автомобилях
наиболее часто устанавливают системы с
магнитоэлектрическим
логометрическим указателем и
терморезистивным датчиком,
реже-импульсные системы.

Термометры

Терморезистивный датчик:
а - конструкция; б - зависимость сопротивления
датчика от температуры;
1- корпус; 2- токоведущая пружина;
З - изоляционная втулка; 4- контактная втулка;
5- таблетка терморезистора; 6- изолятор; 7-вывод.

Термометры


а - электрическая схема термометра;
б - конструкция магнитоэлектрического
логометрического указателя;
1 - каркас; 2 - магнитный экран; 3 - ось стрелки;
4 -обмотки; 5 - постоянный магнит.

Термометры

Термометр с логометрическим указателем:

б - электрическая схема включения;

24 - каркас катушек; 22 - катушки указателя температуры;
43 - датчик указателя температуры; 44 - балансиры магнита и стрелки;
45 - постоянный магнит.

Термометры

Термометр с логометрическим указателем:
а - внешний вид магнитоэлектрического логометрического указателя;
б- электрическая схема включения;
26 - указатель температуры охлаждающей жидкости;
24- каркас катушек; 22-катушки указателя температуры; 43-датчик
указателя температуры; 44- балансиры магнита и стрелки;
45- постоянный магнит.

Термометр импульсной системы

а - электрическая схема термометра; б - устройство
термобиметаллического датчика; в - устройство указателя
импульсной системы; г - электрическая схема термосигнализатора:
1 - датчик; 2- биметаллическая пластина; З - нагревательная
спираль; 4- контакты; 5-указатель; 6- регулировочный сектор; 7-
упругая пластина со стрелкой.

Термометр импульсной системы

«Холодный» двигатель
I
Iэф
t
«Горячий» двигатель
I
Iэф
t

Измерители уровня топлива

а - реостатный датчик; б, в - электрическая схема измерителя
соответственно на 12 и 24 В;
1 - реостат; 2- ползунок; 3, 5 - контакты сигнализатора резервного
запаса топлива; 4-выводы; 6-ось поплавка; 7-поплавок.
L1,L2,L3 - обмотки логометра; Rд - сопротивление датчика; Rт -
резистор термокомпенсации; Rдоб. - добавочный резистор

Измерители уровня топлива с указателем электромагнитной системы

1 - якорек; 2 - стрелка; 3 - полюсные наконечники;
4 - поплавок; L1, L2 – катушки указателя;
Rд - сопротивление датчика.

Измерители давления

а - датчик с реостатным выходом;
б- импульсной системы;
1- штуцер; 2- мембрана; З- реостат; 4-движок
реостата; 5- пластина неподвижного контакта;
6-биметаллическая пластина со спиралью и
подвижным контактом; 7-регулятор;

Измерители давления

в - схема манометра с логометрическим измерителем;
г - схема манометра импульсной системы;
8 - биметаллическая пластина указателя;
L1, L2, L3 - обмотки логометра;
Rд, Rт-резисторы датчика и термокомпенсации.

амперметры;
◦ Электромагнитной системы;
◦ Магнитоэлектрической системы;
вольтметры;
◦ Магнитоэлектрической системы с
подвижной катушкой

Измерители зарядного режима аккумуляторной батареи

Амперметр
электромагнитной
системы





1 – латунная шина;
2 – стрелка;
3 – постоянный магнит;
4 – основание;
5 – якорь.

Измерители зарядного режима аккумуляторной батареи

Амперметр
магнитоэлектрической
системы
◦ 1 – постоянный магнит;
◦ 2 – неподвижная
катушка;
◦ 3 – шунт;
◦ 4 – стрелка;
◦ 5 – неподвижный
постоянный магнит.

Измерители зарядного режима аккумуляторной батареи

Вольтметр магнитоэлектрической системы с подвижной
катушкой

Измерители зарядного режима аккумуляторной батареи

Вольтметр:
◦ красный сектор - напряжение 8...11В, батарея не
заряжается;
◦ белый сектор – напряжение 11...12В, батарея не
дозаряжается;
◦ зеленый сектор – напряжение 12...15 В, зарядка батареи и
работа генераторной установки нормальны;
◦ красный сектор – напряжение 15...16 В, перезарядка
батареи, неисправна генераторная установка.

Спидометры

по типу привода могут быть:
◦ с механическим приводом (гибкий вал);
◦ с электроприводом.
по принципу действия:
◦ магнитоиндукционные;
◦ электронные.

Спидометры

Магнитоиндукционный
спидометр:
а - скоростной узел;
1 - приводной вал;
2 - термомагнитный шунт,
3 - магнит; 4 - картушка;
5 - экран-магнитопровод;
6 - регулятор настройки;
7 - пружина; 8 - стрелка;
9 - привод счетного узла;

Спидометры

Магнитоиндукционный спидометр:
б - счетный узел;
10-барабанчик счетного узла; 11-трибка.

Спидометр с электроприводом

Тахометры

Схема электронного тахометра

Неисправности КИП

Спидометр:
◦ Не работает спидометр;
◦ Неправильное показание скорости;
◦ Колебание стрелки спидометра;
Отсутствие показаний КИП:
◦ Стрелка в исходном положении (обрыв провода от датчика);
◦ Стрелка на максимальном значении (замыкание на массу);
Неисправность датчика:
◦ полный отказ;
◦ нарушение характеристик.
Неисправность указателя:
◦ механические повреждения;
◦ нарушение электрических соединений.

Если заметили ошибку, выделите фрагмент текста и нажмите Ctrl+Enter
ПОДЕЛИТЬСЯ: