Windows. Вирусы. Ноутбуки. Интернет. Office. Утилиты. Драйверы

Мы начинаем серию публикаций о том, что такое цифровое фото, каким образом создается цифровое изображение и как оно сохраняется. Како вы возможности цифровой съемки, о специальных режимах и многом другом, что с началом эпохи цифрового фото знать каждому владельцу "цифровика" просто необходимо.

Часть первая

Начать нужно с того, что принципы работы цифровой фотоаппаратуры ничем не отличаются от аналоговых (пленочных) камер. Три "столпа" на котором держится фотография: скорость затвора (выдержка), диафрагма, создающие экспозицию, и цветовая температура - вот те элементарные вещи, которые должен знать любой фотограф, вне зависимости от того какая камера у него в руках.

Отличия начинаются с того, каким образом строится зафиксированное изображение, то есть, со светочувствительного элемента.

В цифровой камере светочувствительным элементом является фотосенсор - устройство, преобразующее световую энергию в энергию электрического заряда и чем ярче свет, тем больше заряд. Изображение проецируется на матрицу, которая является ничем иным, как несколькими миллионами фотосенсоров, выстроенных в ряды и столбцы на площади не более человеческого ногтя. Информация, поступившая с фотосенсора, называется элементом изображения или просто - пикселом. Этим же словом называется и каждый фотосенсор на матрице.

Пиксел сам по себе не различает цветов, но только регистрирует яркость падающего света. Цветной снимок образуется следующим образом: на матрицу фотосенсоров накладывается матрица светофильтров размером с пиксел. В кластере из четырех пикселов один накрыт красным, другой синим, и два - зеленым (два зеленых имитируют повышенную чувствительность человеческого глаза к зеленому цвету). Таким образом, пиксел, накрытый красным светофильтром, измеряет интенсивность красного, другие - соотвественно синего и зеленого. И уже из комбинации этих трех первичных цветов в нужной пропорции и получается цвет миниатюрного участка изображения. Повтор остальных участков дает полное цветное изображение.

ССD-матрица - это по сути, "прибор с зарядовой связью", после засветки датчика возникающий электрический сигнал преобразуется отдельным усилителем. На передачу информации в него требуются доли секунды, которая и определяет, сколько кадров в секунду может делать камера.

Часть вторая

Каким образом происходит запись изображения, где оно хранится, насколько важным для качества отпечатка является формат сжатия и разрешение, в которых была сделана фотография?

С электронной матрицы аналоговая информация, поступившая в результате измерения электрического заряда на фотосенсорах, преобразовывается в двоичный формат. Затем она записывается на флеш-карту, которая и является носителем информации о сделанном снимке. Карта является гигантской матрицей, состоящей из пересекающихся линий, на каждом пересечении и хранится по одному биту информации. Каждому значению при записи присваивается значение "0" или "1" и при их считывании на компьютере образуется изображение.

Качество цифрового изображения определяется такими важными составляющими, как формат сжатия и разрешение изображения. Самым распространенным форматом сжатия является JPEG, который используется всеми производителями цифровых фотокамер. Для этого формата существуют различные уровни сжатия, но при увеличении сжатия в одну серию попадают пикселы, которые не являются близкими по цвету и яркости и отсюда, естественно, происходит потеря в качестве. Формат сжатия без потерь - RAW, применяется, для того чтобы хранить снимки самого высокого разрешения - они занимают много места на флеш-карте, но и используется это разрешение, как правило, только профессионалами.

Максимальное разрешение в современных цифровых фотокамерах - 2592 х 1944, но использовать его нужно только при создании высококачественных снимков большого формата. Если же Вы снимаете для собственного веб-сайта, или делаете цифровой альбом, то вам вполне достаточно будет разрешения 1024 х 768. Вообще же, если Вы будете печатать фотографии наиболее распространенных размеров 9 х 12 и 10 х 15, то вполне хватает разрешения 1600 х 1200.

Для примера предлагаем Вам таблицу разрешений и уровней сжатия, соответствующих качеству для камеры Canon PowerShort G5. В таблице указано какова будет емкость флеш-карты в зависимости от разрешения формата записи.

Объем карты - 32 Mb. Тип - Compact Flash.

Часть третья

Отчего зависит фокусное расстояние в цифровой камере и с чем его принято сравнивать. Что такое цифровой зум.

Как правило, в цифровых фотоаппаратах фотосенсор меньше по размеру, чем кадр на 35-мм пленке, поэтому, сравнивая датчик с кадром на пленке, видно, что при одном и том же фокусном расстоянии объектива на датчик попадает меньшая часть снимаемой сцены.

Датчики на цифровом фото бывают самых разных размеров, при том, что большая часть пользователей имеет опыт съемки на 35-мм пленку и с объективами различных фокусных расстояний, стало принято сравнивать угол поля зрения цифровой камеры с объективом пленочной камеры. То есть если и в аналоговой камере и в "цифровике" объектив с одним и тем же фокусным расстоянием, то угол зрения 35-мм камеры шире, чем у цифровой. И для получения аналогичного изображения в 35-мм камере нужен объектив с большим фокусным расстоянием, чем в цифровой камере, что дает уменьшение угла зрения. К примеру, объектив цифровой камеры с фокусным расстоянием 4 мм может соответствовать 28-мм объективу 35-мм камеры. Записывется это следующим образом: 4 мм (эквивалент 35-мм пленки: 28 мм).

Одной из особенностей цифрового фотоаппарата является то, что кроме оптического зума (зум от английского - приближение), они снабжены цифровым зумом. И если оптический зум дает возможность переводить объектив в широкоугольное положение, то цифровой зум увеличивает диапазон трансфокации. Цифровое зуммирование увеличивает центральную часть изображения до размера полного кадра и из-за того, что изображение снимается с меньшего числа пикселов, его разрешение уменьшается, и качество отпечатка будет ниже, чем при оптическом зуммировании, но в любом случае, согласитесь дополнительные возможности никогда не бывают лишними:)

Часть четвёртая

Ключевое слово в процессе фотосъемки - экспозиция, которая зависит от двух факторов: яркости света, а также от длительности его воздействия на матрицу. Яркость света регулируется диафрагмой, а длительность экспонирования выдержкой. Светосила обозначается как отношение f / n, при этом, широким диафрагмам соответствуют маленькие числа - f / 2,8, f / 2,0, а узким - большие - f / 11, f / 16. Как правило, в цифровых фотокамерах имеется также и полностью автоматический режим экспозиции. Фотокамера в этом режиме автоматически замеряет освещенность и выставляет выдержку и диафрагму, обеспечивающие правильную экспозицию.

Различные творческие режимы позволяют дополнять автоматику. Можно выбрать выдержку с приоритетом диафрагмы и наоборот. Но наибольшие творческие возможности, все-таки открывает ручная съемка, и здесь важнейшим преимуществом любого цифрового фотоаппарата перед аналоговым является возможность просмотра сделанных снимков на ЖК-дисплее. Хотя изображение на дисплее невелико, но его вполне достаточно, чтобы оценить насколько хорошим получилась композиция и экспозиция сделанного снимка и при этом как и в зеркальной камере на жк-дисплее отражается 100% картинки. В макрорежиме съемку также лучше вести с помощью ЖК-дисплея. ЖК-дисплей работает и в режиме меню, что позволяет производить все настройки камеры. Можно стирать неудавшиеся изображения, что экономит место на флеш-карте.

Перед знакомством с основами фотосъемки нужно изучить, чтобы узнать, как основные понятия фотографии реализуются на практике.

В первую очередь, в входит корпус фотоаппарата, также именуемый «тушкой» или «боди» от английского слова “body”.

В этой части фотоаппарата находится , которая регистрирует фотографии, а также элементы управления камерой, с помощью которых фотограф указывает, когда и как фотографировать. В состав корпуса также входят аккумулятор, встроенная , электронный дисплей для просмотра фотографий и другие элементы.

В тыльной части камеры находится видоискатель, в который фотограф видит кадр во время фотосъемки.

В основе работы некоторых видоискателей лежит зеркало, с помощью которого можно видеть сцену через объектив (такие видоискатели называются TTL). Другие видоискатели представляют собой просто отверстие в корпусе камеры (распространены в мыльницах). Благодаря TTL-видоискателю полученное изображение имеет именно те границы, которые фотограф определил при съемке, поэтому его включают в для профессиональных фотографов и серьезных любителей, чтобы обеспечить максимальную точность передачи изображения.

Спуск затвора

Спуск затвора – это специальная кнопка, с помощью которой затвор внутри камеры поднимается, чтобы зарегистрировать кадр. Устройство фотокамеры профессиональной (зеркальной) также предполагает, что этой кнопкой также поднимается зеркало, благодаря которому фотограф видит происходящее через объектив. В большинстве таких камер спуском затвора можно также управлять дистанционно, с помощью специального кабеля или инфракрасного порта.

Затвор

Непрозрачная деталь из металла или пластика внутри камеры, которая защищает матрицу или пленку от попадания на нее света. Затвор поднимается с помощью кнопки спуска, которая также входит в . На нее нажимает фотограф, чтобы запечатлеть кадр. Время, в течение которого затвор остается открытым, регулируется выдержкой.

Управление выдержкой

Выдержка – это элемент управления, с помощью которого фотограф указывает камере, на какое время открыть затвор. В автоматических камерах (мыльницах) выдержка настраивается через специальное меню, и ее значение отображается на дисплее. В профессиональных и полупрофессиональных камерах выдержка регулируется при помощи специального колесика на корпусе камеры. Выдержка измеряется в долях секунды, например, 1/60. На дисплей камеры обычно выводится только знаменатель, например, 60.

Управление светочувствительностью

С помощью светочувствительности фотограф настраивает камеру для работы в различных условиях освещения. Управление светочувствительностью входит в как элемент меню. В профессиональных камерах ею можно управлять с помощью отдельной кнопки.

Управление диафрагмой

В автоматических фотоаппаратах-мыльницах диафрагма настраивается через меню. В зеркальных фотокамерах управлять этим параметром можно с помощью отдельного колесика или кнопки. Этот параметр регулирует отверстие диафрагмы, которая находится внутри объектива.

Матрица

Матрица – ключевой элемент, входящий в . С ее помощью фотоаппарат регистрирует фотографии. Матрица – это светочувствительный материал, на который проецируется изображение. От физического размера этого элемента зависит качество фотографий. Чем больше матрица, тем лучше качество получаемых изображений.

Вспышка

Чаще всего в также входит встроенная вспышка. В мыльницах вспышка встроена в корпус фотоаппарата. В зеркальных фотокамерах и некоторых компактах она выносится над камерой на специальном держателе.

«Горячий башмак»

– обязательный элемент, который входит в , используемой для профессиональных целей. Это металлическое крепление, в которое вставляется внешняя вспышка. Крепление называется горячим башмаком, поскольку в нем размещены электрические контакты, и вспышка заходит в них, как нога в обувь.

Кольцо объектива (байонет)

Кольцо объектива включено в , которая позволяет менять объективы. Это металлическое кольцо в лицевой части камеры, на которое крепится объектив. В кольце находятся электронные контакты, посредством которых на объектив передаются параметры съемки. Сбоку от кольца находится специальная кнопка, нажав на которую, фотограф может отсоединить объектив от корпуса камеры.

Объектив

К корпусу камеры через байонет крепится объектив — элемент, с помощью которого изображение проецируется на матрицу. В следующей статье подробно описано устройство объектива фотоаппарата.


Человека всегда тянуло к прекрасному, увиденной красоте человек пытался придать форму. В поэзии это была форма слова, в музыке красота имела гармоническую звуковую основу, в живописи формы прекрасного передавались красками и цветом. Единственное, что не мог человек, это запечатлеть мгновение. Например, поймать разбивающуюся каплю воды или рассекающую грозовое небо молнию. С появлением в истории фотоаппарата и развитием фотографии это стало возможным. История фотографии знает множественные попытки изобретения фотографического процесса до создания первой фотографии и берет начало в далеком прошлом, когда математики изучая оптику преломления света обнаруживали, что изображение переворачивается, если пропустить его в темную комнату через небольшой отверстие.

В1604 г. немецкий астроном Иоганн Кеплер установил математические законы отражения света в зеркалах, которые в последствии залегли в основу теории линз по которым другой итальянский физик Галилео Галилей создал первый телескоп для наблюдения за небесными телами. Принцип преломления лучей был установлен, оставалось только научиться каким-то образом сохранять полученные изображения на отпечатках еще не раскрытым химическим путем.

В 1820-е гг.. Жозеф Нисефор Ньепс открыл способ сохранения полученного изображения путем обработки попадающего света асфальтовым лаком (аналог битума) на поверхность из стекла в, так называемой камере-обскуре. С помощью асфальтового лака изображение принимало форму и становилось видимым. В первые в истории человечества картину рисовал не художник, а падающие лучи света в преломлении.

В 1835 г. английский физик Уильям Тальбот, изучая возможности камеры-обскура Ньепса смог добиться улучшения качества фотоизображений с помощью изобретенного им отпечатка фотографии - негатива. Благодаря этой новой возможности снимки теперь можно было копировать. На своей первой фотографии Тальбот запечатлел собственное окно на котором четко просматривается оконная решетка. В будущем он написал доклад, где называл художественное фото миром прекрасного, таким образом заложив в историю фотографии будущий принцип печати фотографий. В 1861 г. фотограф из Англии Т. Сэттон изобрел первый фотоаппарат с единым зеркальным объективом. Схема работы первого фотоаппарата была следующей, на штатив закреплялся крупный ящик с крышкой сверху, через которую не проникал свет, но через которую можно было вести наблюдение. Объектив ловил фокус на стекле, где с помощью зеркал формировалось изображение.

В 1889 г. в истории фотографии закрепляется имя Джорджа Истмана Кодак, который запатентовал первую фотопленку в виде рулона, а потом и фотокамеру "Кодак", сконструированную специально для фотопленки. В последствии, название "Kodak" стало брэндом будущей крупной компании. Что интересно, название не имеет сильной смысловой нагрузки, в данном случае Истман решил придумать слово, начинающееся и заканчивающиеся на одну и ту же букву.

В 1904 г. братья Люмьер под торговой маркой "Lumiere" начали выпускаться пластины для цветного фото, которые стали основоположниками будущего цветной фотографии .

В 1923 г. появляется первый фотоаппарат в котором используется пленка 35 мм, взятая из кинематографа. Теперь можно было получать небольшие негативы, просматривая затем их выбирать наиболее подходящие для печатания крупных фотографий. Спустя 2 года фотоаппараты фирмы "Leica" запускаются в массовое производство.

В 1935 г. фотоаппараты Leica 2 комплектуются отдельным видеоискателем, мощной фокусировочной системой, совмещающие две картинки в одну. Чуть позже в новых фотоаппаратах Leica 3 появляется возможность использования регулировки длительности выдержки. Долгие годы фотоаппараты Leica оставались неотъемлимыми инструментами в области искусства фотографии в мире.

В 1935 г. компания "Kodak" выпускает в массовое производство цветные фотопленки "Кодакхром". Но еще долгое время при печати их надо было отдавать на доработку после проявки где уже накладывались цветные компоненты во время проявки.

В 1942 г. "Kodak" запускают выпуск цветных фотопленок "Kodakcolor", которые последующие полвека становятся одними из популярными фотопленками для профессиональных и любительских камер.

В 1963 г. представление о быстрой печати фотографий переворачивают фотокамеры "Polaroid", где фотография печатается мгновенно после полученного снимка одним нажатием. Достаточно было просто подождать несколько минут, чтобы на пустом отпечатке начали прорисовываться контуры изображений, а затем проступала полностью цветная фотография хорошего качества. Еще 30 лет универсальные фотоаппараты Polaroid будут занимать ведущие по популярности места в истории фото, чтобы уступить эпохе цифровой фотографии.

В 1970-х гг. фотоаппараты снабжались встроенным экспонометром, автофокусировку, автоматические режимы съемки, любительские 35 мм камеры имели встроенную фотовспышку. Чуть позже к 80-м годам фотоаппараты начали снабжаться ж/к панелями, которые показывали пользователю программные установки и режими фотокамеры. Эра цифровой техники только начиналась.

В 1974 г. с помощью электронного астрономического телескопа была получена первая цифровая фотография звездного неба.

В 1980 г. компания "Sony" готовит к выпуску на рынок цифровую видеокамеру Mavica. Снятое идео сохранялось на гибком флоппи-диске, который можно было бесконечно стирать для новой записи.

В 1988 г. компания "Fujifilm" официально выпустила в продажу первый цифровой фотоаппарат Fuji DS1P, где фотографии сохранялись на электронном носителе в цифровом виде. Фотокамера обладала 16Mb внутренней памяти.

В 1991 г. компания "Kodak" выпускает цифровую зеркальную фотокамеру Kodak DCS10, имеющую 1,3 mp разрешения и набор готовых функций для профессиональной съемки цифрой.

В 1994 г. компания "Canon" снабжает некоторые модели своих фотокамер системой оптической стабилизации изображений.

В 1995 г. компания "Kodak", следом за Canon прекращает выпуск популярных последние полвека пленочных своих фирменных фотокамер.

2000-х гг. Стремительно развивающиеся на базе цифровых технологий корпорации Sony, Samsung поглощают большую часть рынка цифровых фотоаппаратов. Новые любительские цифровые фотоаппараты быстро преодолели технологическую границу в 3Мп и по размеру матрицы легко соперничают с профессиональной фототехникой имея размер от 7 до 12 Мп. Несмотря на быстрое развитие технологий в цифровой технике, таких как: распознавание лица в кадре, исправление оттенков кожи, устранение эффекта "красных" глаз, 28-кратное "зумирование", автоматические сцены съемки и даже срабатывание камеры на момент улыбки в кадре, средняя цена на рынке цифровых фотокамер продолжает падать, тем более что в любительском сегменте фотоаппаратам начали противостоять мобильные телефоны, снабженные встроенными камерами с цифровым зумом. Спрос на пленочные фотоаппараты стремительно упал и теперь наблюдается другая тенденция повышения цены аналоговой фотографии, которая переходит в разряд раритета.



Устройство пленочного фотоаппарата

Принцип работы аналогового фотоаппарата: свет проходит через диафрагму объектива и, вступая в реакцию с химическими элементами пленки сохраняется на пленке. В зависимости от настройки оптики объектива, применения особых линз, освещенности и угла направленного света, времени раскрытия диафрагмы можно получить различный вид изображения на фотографии. От этого и многих других факторов формируется художественный стиль фотографии. Конечно, главным критерием оценки фотографии остается взгляд и художественный вкус фотографа.

Корпус.
Корпус фотоаппарата не пропускает свет, имеет крепления для объектива и фотоспышки, удобную форму ручки для захвата и место для крепления к штативу. Внутрь корпуса помещается фотопленка, которая надежно закрыта светонепропускающей крышкой.


Фильмовой канал.
В нем пленка перематывается, останавливась на нужном для съемке кадре. Счетчик механически связан с фильмовым каналом, при прокрутке которого указывает на количество отснятых кадров. Существуют камеры с моторным приводом, которые позволяют делать съемку через последовательно заданный промежуток времени, а также вести скоростную съемку до нескольких кадров в секунду.


Видоискатель.
Оптический объектив через которое фотограф видит в рамке будущий кадр. Зачастую имеет дополнительные метки для определения положения объекта и некоторые шкалы настройки светка и контрастности.

Объектив.
Объектив - мощный оптический прибор, состоящий из нескольких линз, позволяющий делать изображения на различном расстоянии со сменой фокусировки. Объективы для профессиональной фотосъемки помимо линз состоят еще из зеркал. Стандартный объектив имеет расстояние фокусаокругленно равное диагонали кадра, угол 45 градусов. Фокусное расстояние широкоугольного объектива меньшее диагонали кадра служит для съемки в небольшом пространстве, угол до 100 градусов. для удаленных и панорамных объектов применяется телескопический объектив у которого фокусное расстояние гораздо больше диагонали кадра.

Диафрагма.

Устройство регулирующее яркость оптической картинки объекта фотографирования по отношению к его яркости. Наибольшее распространение получила ирисовая диафрагма, у которой световое отверстие образуется несколькими серповидными лепестками в виде дуг, при съемке лепестки сходятся или расходятся, уменьшая или увеличивая диаметр светового отверстия.

Затвор

Затвор фотоаппарата приоткрывает шторки для попадания света на пленку, затем свет начинает действовать на пленку, вступая в химическую реакцию. От продолжительности приоткрытия затвора зависит экспозиция кадра. Так для ночной съемки ставится более длительная выдержка, для съемке на солнце или скоростной съемке максимально короткая.





Дальнометр.

Устройство с помощью которого фотограф определяет расстояние до объекта съемки. нередко дальномер бывает совмещен для удобства с видоискателем.

Кнопка спуска.

Запускает процесс фотосъемки длящийся не более секунды. В одно мгновение срабатывает затвор, раскрываются лепестки диафрагмы, свет попадает на химический состав фотопленки и кадр запечатлен. В старых пленочных фотоаппаратах кнопка спуска основана на механическом приводе, в более современных фотоаппаратах кнопка спуска, как и остальные движущиеся элементы камеры на электроприводе


Катушка фотплёнки
Катушка на которую крепится фотопленка внутри корпуса фотоаппарата.По окончании кадров на пленке в механических моделях пользователь перематывал фотопленку в обратном направлении в ручную, в более современных фотоаппаратах пленка перематывалась по окончании с помощью электромоторного привода, работающего от пальчиковых батареек.


Фотовспышка.
Плохая освещенность объектов фотосъемки приводит к использованию фотоспышки. В профессиональной съемке к этому приходится прибегать только в неотлагательных случаях когда нет других приборов освещения экранов, ламп. Фотоспышка состоит из газорязрядной лампы в виде стеклянной трубки содержащей газ ксенон. При накапливании энергии вспышка заряжается, газ в стеклянной трубке ионизируется, затем мгновенно разряжается, создавая яркую вспышку при силе света свыше сотни тысяч свечей. При работе вспышки нередко отмечается эффект "красных глаз" у людей и животных. Это происходит потому, что при недостаточной освещенности помещения где проводится фотосъемка, глаза человека расширяются и при срабатывании вспышки зрачки не успевают сузиться, отражая слишком много света от глазного яблока. Для усранения эффекта "красных глаз" используется один из методов предварительного направления светового потока на глаза человека перед срабатыванием вспышки, что вызывает сужение зрачка и меньшим отражением от него света вспышки.

Устройство цифрового фотоаппарата


Принцип работы цифрового фотоаппарата на стадии прохождения света через линзу объектива тот же, что и у пленочного. Изображение преломляется через систему оптики, но сохраняется не на химическом элементе фотопленки аналоговым путем, а преобразуется в цифровую информацию на матрице от разрешающей способности которой и будет зависеть качество снимка. Затем перекодированное изображение в цифровом виде сохраняется на сменном носителе информации. Информацию в виде изображения можно редактировать, перезаписывать и отправлять на другие носители данных.

Корпус.

Корпус цифрового фотоаппарата имеет вид по аналогии с пленочным фотоаппаратом, но за счет отсутствия необходимости фильмового канала и места для катушки с пленкой, корпус современного цифрового фотоаппарата значительно тоньше обычного пленочного и имеет место для ЖК экрана, встроенного в корпус, либо выдвижного, и слоты для карт памяти.

Видоискатель. Меню. Настройки (ЖК экран) .

Жидкокристалический экран неотъемлимая часть цифрового фотоаппарата. Он имеет совмещенную функцию видоискателя, в котором можно приближать объект, видеть результат автофокусировки, выстраивать экспозицию по границам, а также использовать его в качестве экрана меню с настройками и опциями набора функций съемки.

Объектив.

В профессиональных цифровых фотоаппаратах объектив практически ничем не отличается от аналоговых фотокамер. Он также состоит из линз и набора зеркал и имеет те же механические функции. В любительских камерах объектив стал гораздо меньших форм и помимо оптического зума (приближение объекта) имеет встроенный цифровой зум, который способен многократно приблизить отдаленный объект.

Матрица сенсор.

Главный элемент цифровой фотокамеры небольшая пластина с проводниками которая формирует качество изображения, четкость которого и зависит от разрешающей способности матрицы.

Микропроцессор.

Отвечает за все функции работы цифровой камеры. Все рычаги управления камеры ведут к процессору в котором зашита программная оболочка (прошивка), которая отвечает за действия фотокамеры: работа видоискателя, автофокус, программные сцены съемки, настройки и функции, электрический привод выдвижного объектива, работа фотовспышки.

Стабилизатор изображений.

При покачивании камеры во время нажатия на спусковой завтор или при съемке с движущейся поверхности, например, с качающегося на волнах катера, изображение может получится размытое. Оптический стабилизатор практически не ухудшает качество полученной картинки за счет дополнительной оптики, которая компенсирует отклонения изображения при покачивании, оставляя изображение неподвижным перед матрицей. Схема работы цифрового стабилизатора изображения фотоаппарата при дрожании картинки заключается в условных поправках, вносимых при расчете картинки процессором, задействовав дополнительную треть пикселей на матрице, учавствующих только в коррекции изображения.

Носители информации.

Полученное изображение сохраняется в памяти фотоаппарата в виде информации на внутренней, либо внешней памяти. Фотоаппараты имеют разъемы для карт памяти SD, MMC, CF, XD-Picture и др., а также разъемы для подключения к другим источникам храненияинформации компьютеру, HDD сменным носителям и т.п.

Цифровая фототехника сильно поменяла представления в истории фотографии о том какое должно быть художественное фото. Если в прежние времена фотографу приходилось идти на различные ухищрения, чтобы получить интересный цвет или необычный фокус для определения жанра фотографии, то теперь есть целый набор примочек, включенных в программное обеспечение цифровой фотокамеры, коррекция размеров изображения, изменение цвета, создание рамки вокруг фото. Также любую отснятую цифровую фотографию можно подвергнуть редактированию в известных фоторедакторах на компьютере и легко установить в цифровую фоторамку, которые следом за пошаговым наступлением цифровых технологий становятся все более популярными для украшения интерьера чем-то новым и необычным.

Cоветы по цифровой фотографии для чайников

Cоветы по цифровой фотографии для "чайников".

Советы по съемке цифровым фотоаппаратом.

Освещение
Как правило, цифровые фотоаппараты нуждаются в лучшей освещенности, чем традиционные пленочные аппараты. Фотографируя в помещении, постарайтесь включить как можно больше света, дабы убедиться, что объект съемки достаточно освещен. Для получения более естественных цветов используйте солнечный свет при открытых шторах и жалюзи. Солнечный дополнительный свет улучшит качество ваших фотографий и сделает их ярче.
Учитесь использовать вспышку, так как съемка цифровым фотоаппаратом требует больше света. Некоторые камеры автоматически включают вспышку, поэтому вам не придется беспокоиться о ее настройке. Если в комплектацию вашей камеры входит вспышка, найдите время для изучения фотосправочника. Настройка вспышки необходима, чтобы избежать эффекта "красных глаз" и улучшить качество фотографии. Не забудьте, что вспышку можно использовать и в помещении, и на улице.
СОВЕТ : При использовании вспышки увеличивается расход энергии. Всегда держите при себе дополнительные батареи "про запас", когда собираетесь сделать много снимков или отправляетесь в отпуск.

Съемка движущихся объектов
Цифровой камере требуется несколько больше времени на производство снимка, чем обычному пленочному фотоаппарату. Это не имеет значения, если вы собираетесь фотографировать поле цветов, но если вы хотите снять в движении футбольную команду вашего ребенка, задача будет сложнее.
СОВЕТ: Сфокусируйте камеру чуть раньше, чем объект съемки появится в центре видоискателя. Когда объект только появится в рамке, произведите спуск затвора, таким образом, при окончательном срабатывании камеры движущийся предмет будет полностью в кадре.

Экспериментируйте!
Делайте множество снимков. Так как вы не платите за пленку, не бойтесь делать варианты одного и того же фото в разных режимах и с различными настройками. Чем больше способов фотографирования вы усвоите, тем больше превосходных фотографий будет вам обеспечено.
СОВЕТ: Попробуйте поработать с разными композициями и подсветками. Не забудьте взять одну или две дополнительных карт памяти.

Если вы уже сделали фотографии с помощью цифровой камеры или отсканировали изображения, пора перенести их в компьютер. Это можно сделать разными способами. Соедините кабелем компьютер с цифровой камерой, сканером или с считывающим устройством карт памяти вашей цифровой фотокамеры. Это надежный способ передачи изображений на компьютер имеет ряд преимуществ, так как скорость переноса файлов просто замечательная. Вам не придется терять время, ожидая, пока вы сможете увидеть переносимые изображения.

Когда вы делаете цифровую фотографию или конвертируете уже имеющуюся в цифровой файл, следует учитывать следующие параметры:
.разрешение изображения в пикселах,
.сжатие файла
.формат файла

Разрешение в пикселах.

Цифровое изображение состоит из маленьких квадратных точек, называемых пикселами. Пикселы одинаковы по размеру и у каждого - собственный цвет. Воспринимая, все пикселы вместе, глаз человека узнает изображенный объект. Телевизоры и мониторы работают по тому же принципу, освещая тысячи маленьких точек и создавая, таким образом, изображение на экране.
Все пикселы изображения создают зрительный образ, чем больше пикселов в изображении, тем больше можно различить деталей, т.е. тем выше разрешение. Если вы когда-либо видели цифровые фото, где в изображении видны маленькие квадраты, "цветовые дырки" и "лесенки", значит, это было изображение с низким разрешением.

Разрешение важно по многим причинам. Следует учитывать не только разрешение в пикселах, но и допустимый размер печати. Вот примеры соотношения разрешения печатному размеру, гарантирующее высококачественную цифровую печать фотографий.
Менее 640 x 480 Половинный размер фотоотпечатка 10x15 см.
640 x 480 Минимально допустимое разрешение для формата 10x15 (фотография будет недостаточно высокого качества)
1024 x 768 Минимальное рекомендуемое разрешение для формата 10x15 см.
1152 x 864 Минимальное рекомендуемое разрешение для формата 13x18
1600 x 1200 Минимальное рекомендуемое разрешение для формата 18x24

Другая причина выбора высокого разрешения проста: вы всегда можете сократить цифровое изображение до меньших размеров, однако этот процесс необратимый. Почему? При увеличении изображения с низким разрешением оно становится размытым, нечетким.
Это происходит потому, что компьютер "догадывается", сколько пикселов и каких цветов добавить в изображение в необходимом порядке при увеличении размера изображения. Этот процесс называется "интерполяцией". Чем больше пикселов должен восстановить компьютер, тем хуже получится изображение.
СОВЕТ: Всегда берите фотографию с наивысшим разрешением в пикселах. При желании вы всегда сможете уменьшить разрешение изображения после обработки фотографии.

Сжатие файла

Когда цифровой фотоаппарат или сканер зафиксирует изображение, размер файла может быть достаточно большим. Работать с фотографией или перемещать ее через Интернет будет непросто.
Для удобства работы с большими файлами используют сжатие файла. Оно происходит в том случае, если компьютер ведет поиск сходства в цифровых изображениях. Компьютер описывает эти сходства в сокращенном виде, редактируя размер файла. Сжатие файла может происходить по-разному:
.Если на вашей фотографии распростерлось голубое небо, то, вместо того, чтобы описывать, каждый пиксел голубого неба, сжатый файл может описать небо в строках из 10 рядов того же голубого цвета.
.Другой путь сокращения размера файла при сжатии - сокращение количества цветов в цифровом изображении. Если на вашей фотографии изображено большое количество зеленых листьев, компьютер попытается уменьшить количество цветов. Тем самым, различные оттенки цвета будут сгруппированы и заменены одним главным зеленым цветом.
.Временами сжатие файла происходит автоматически в цифровых фотоаппаратах и сканерах в связи с тем, что это позволяет добиться лучшего соотношения между качеством и размером файла. Сохраняя файл, вы можете выбирать между уровнем сжатия файла или уровнем качества изображения. Большинству фотографов подходит качество7 или 8 (где максимальное качество - 10).
СОВЕТ: Если вы впервые сохраняете файл, то сохраните его с наивысшим качеством. Чем оно ниже, тем больше информации о первоначальном изображении вы потеряете.

Форматы файла

Обилие вариантов цифровых файлов может показаться устрашающим. В чем разница между.jpg, .bmp, .tiff, .pict, .gif, и.eps? Есть ли преимущества одних над другими? Взаимозаменяемы ли они?
Специалисты могут рассматривать все без исключения заслуги разных форматов файлов, но вас интересуют только две особенности каждого формата файлов:
.используется компрессия или нет (и качество изображения при компресси)
.назначение и использование цифровых файлов
Например, большинство Интернет-страниц содержат.gif или.jpg файлы. Ваш фотоаппарат должен сохранять файлы в подходящих вам форматах:
.BMP Сжатия нет. Bitmap. Представляет каждый пиксел отдельно, поэтому файл большого размера.
.EPS Сжатия нет. Не распространен широко. Используется для работы с графикой в полиграфии.
.GIF Сжатие есть. Преимущественно используется для веб-графики. Подходит для сжатия изображений с малым количеством цветов (схемы, графики, логотипы)
.JPG Сжатие есть. Самый распространенный тип файла с использованием сжатия изображения. Широко используется как в Интернет, в цифровом фото и фотопечати
.PSD Сжатие есть. Файл Photoshop. Может быть открыт только в Adobe Photoshop.
.TIFF Сжатие есть. Сжатый формат файла, который имеет опцию LZW-сжатия без потери качества изображения.

Если ваша цифровая камера сохраняет изображения в другом формате, нежели в.jpg, то вы можете использовать графические программы, которые конвертируют файлы во многие графические форматы.
Если у вас IBM-совместимый компьютер и jgthfwbjyyfz система Microsoft Windows, то вы можете воспользоваться для ковертации утилитой Paint, которая находится в папке Служебных программ. Если у вас компьютер Macintosh и инсталлирован Quicktime 4, вы можете открыть цифровые файлы с помощью Picture Viewer и преобразовать их.

Многие из нас в качестве первого опыта делают простые фотографии. Даже при широких возможностях цифровой камеры в случае допущенной ошибки большинство предпочитает сделать повторный снимок, а не исправить уже имеющийся. Однако, отправив ваши фото с камеры или сканера на компьютер, вы имеете массу возможностей продолжить работу над вашими цифровыми изображениями.
.Освещенность изображения - возможно, ваша вспышка не сработала, или, наоборот, снимок слишком светлый. В этих случаях вы можете отрегулировать уровень освещенности и контрастность снимка.
.Резкость фокуса - при легком сотрясении камеры или при съемке быстро двигающегося объекта фото получается немного не в фокусе. Для редактирования таких снимков можно увеличить резкость слегка размытого изображения.
.Удаление шума и царапин - при сканировании фотографий вы часто замечаете на отсканированном изображении шум или царапины. Редактор изображения позволит вам увеличить изображение и, выделив проблемную область, очистить ее от мусора и, таким образом, улучшить снимок.
.Добавление рамки или надписи - помимо редактирования фотографий вы можете добавить художественную рамку вокруг снимка или надпись на обратной стороне печатаемой фотографии.

Редакторы фотографий.

В продаже есть достаточное количество программ, позволяющих вам редактировать фото. Их возможности настолько широки, что они дают возможность определить, какие особенности изображения нуждаются в коррекции, что важно для вас, а без чего можно обойтись. Таким образом, перед покупкой оборудования, убедитесь, что приобретаете продукцию, соответствующую вашим потребностям. Многие цифровые камеры и сканеры уже содержат редакторы изображений. Проверьте, содержатся ли они в той технике, которую вы собираетесь купить.

br /

Тема урока: «Цифровые устройства обработки информации : цифровая видеокамера »

Цель урока:

создать условия для формирования у учащихся представления о видах и назначении цифровых устройств для обработки информации;

продолжить развивать навыки обработки информации с помощью различных устройств;

продолжить воспитывать бережное отношение к компьютерной технике , выполнение правил безопасного поведения в кабинете

ХОД УРОКА:

1. Организационный момент.

2. Повторение материала предыдущего урока:
1) о каком устройстве мы говорили на прошлом уроке?

2) Какие основные элементы фотоаппарата вы можете назвать?

3) Каковы достоинства цифровых фотокамер?

4) Где хранятся изображения в фотоаппарате?

5) Как осуществляется передача изображений с фотоаппарата?

3. Изучение нового материала.

К сегодняшнему уроку вы подготовили сообщения о цифровых видеокамерах – устройствах, которое намного расширяет возможности современных компьютеров. Знакомство с этим устройством мы проведем по тому же плану, что и знакомство с цифровым фотоаппаратом, т. е:

1 – основные элементы видеокамеры

2– достоинства цифровых видеокамер

3– устройства для записи информации в видеокамере

4 - передача информации с видеокамеры в компьютер

5– веб-камеры

Предоставим слово представителям групп.

(учащиеся делают сообщения, при необходимости сопровождают рассказ иллюстрациями)

Материал, который может быть предложен учащимся, находится в приложении 1.

4. Практикум по переносу видео в компьютер

Так же как и на прошлом уроке, можно снимать фрагменты выступлений учащихся, их деятельность на уроке . На практике показать, как перенести видео (на крайний случай с фотоаппарата). Форма работы – индивидуальная.

5. Монтаж видеофильма об изучении Цифровых устройств обработки информации

Работа с видеоредактором MoveMaker (фронтально):

MoveMaker .

2. Загрузить видео изображения – Запись видео - Импорт видео.

3. Загрузить фото – Запись видео - Импорт изображений

4. Расположить видеофрагменты и фотографии на панель раскадровки (перетаскиванием)

5. Добавить переходы: Монтаж фильма – Просмотр видеопереходов – Выбрать видеопереход – перетащить его на панель раскадровки в область между кадрами.

6. Добавит эффекты: Монтаж фильма – Просмотр эффектов – Выбрать эффект – перетащить его на панель раскадровки непосредственно на кадр. Для усиления эфеекта, его можно использовать несколько раз.

7. Добавление тиров и надписей: Монтаж фильма – Создание названий и титров – Выбрать эффект титров или надписи – ввести текст, установить форматирование – нажать кнопку «Готово».

8. Добавление музыки: Запись видео – импорт звука и музыки – перетащить фрагмент на панель раскадровки.

9. Сохранение фильма в формате WMV – Завершение создания фильма – Сохранение фильма на компьютере - Подтверждать запросы мастера сохранения фильма.

Данный алгоритм выдать учащимся как памятку. Работу выполняем все вместе, учитель показывает все тоже самое на экране.

6. Домашнее задание: На следующем уроке учащимися будет выполняться проект по созданию фильма. Для этого им предстоит продумать тематику проекта, какие фрагменты и фотографии они будут использовать. На уроке им предстоит отснять материал и смонтировать небольшой фильм. (Тематика разнообразна: Моя школа, Мой класс, Наш кабинет информатики, Наши учителя и т. д.) Работа предполагается в группах по 2-3 человека.

Приложение 1. Видеокамеры

Видеокамеры в первую очередь делятся на цифровые и аналоговые. Здесь я не буду рассматривать аналоговые камеры (VHS , S -VHS , VHS -C , Video -8, Hi -8) по вполне понятным причинам. Им место в комиссионке, или на верхней полке в кладовке (а вдруг когда-нибудь раритетом станет), но обработка аналогового видео рассмотрена будет обязательно, так как кассет, я думаю, у каждого найдется немало. Итак, современные бытовые видеокамеры различаются по виду носителя видеоинформации, по способу записи (кодировке) видеоинформации, по размеру и количеству матриц, ну и, само собой по оптике.

1.1.1. По виду носителя информации камеры делятся на:

HDV -камеры: новейший и судя по всему основной в будущем формат. Размер кадра до 1920*1080. Представьте себе, каждый кадр – это 2-х мегапиксельная фотография, и вы поймете какое качество видео. Строго говоря, HDV – это формат записи, так как есть камеры HDD , работающие по формату HDV . Но я специально поставил этот формат в этот ряд, так как большинство существующих HDV -камер пишут на кассеты. Если деньги для вас не проблема, эти камеры для вас.

DV -камеры: основной формат бытовых цифровых видеокамер. Размер кадра 720*576 (PAL ) и 720*480 (NTSC ). Качество записи во многом зависит от оптики и качества (и количества) матриц. DV -камеры делятся на собственно DV (mini -DV ) – камеры и камеры Digital -8. Какую именно покупать, зависит от вас, с одной стороны mini -DV – камеры более распространенны, с другой, если до этого у вас была камера Video -8, есть смысл обратить внимание на камеры Digital -8, так как эти камеры свободно записывают на любые кассеты формата 8 (Video -8, Hi -8, Digital -8(могут, конечно, ругаться, мол, слабовата Video -8 для меня, но пишут на них запросто)), кроме того, записывая на кассеты лучшего качества (Hi -8, Digital -8), вы получите более продолжительную запись по сравнению с mini -DV .

DVD -камеры. Я не отношусь к поклонникам данного вида камер. Качество записи у них ниже, чем у DV -камер, да и диска при наилучшем для них качестве хватает минут на 20. Но! Если вы не притязательны к качеству (тем более что на экране обыкновенного телевизора разница не так и заметна) и у вас нет желания заморачиваться с изготовлением фильма, последующей кодировкой в DVD -формат, вы вполне можете пользоваться DVD -камерой. Тем более что собрать полноценный DVD из полученных файлов на DVD 1,4 Гб (используемый в DVD -камерах), можно довольно быстро с помощью специализированных программ (например, CloneDVD и DVD -lab ).

Флэш-камеры. Запись производится на флэш-карточку в форматах MPEG 4 и MPEG 2. Продолжительность зависит от объема карточки, выбранного размера кадра и качества кодировки. MPEG 2 предпочтительней, так как качество выше, но места занимает больше. Но ни тот, ни другой формат при обработке камерой видеоинформации для записи на карточку не смогут обеспечить качество, хоть немного приближенное к DV . Поэтому порекомендовать подобные камеры можно для подарка детям или для съемок в экстремальных условиях, так как неоспоримым преимуществом этих камер является компактность и отсутствие механических частей (исключение – трансфокатор).

HDD -камеры. Запись производится на встроенный жесткий диск. Запись может производится во всех форматах от HDV до MPEG 4 (зависит от модели). Возможно, как и флэш-камеры – это будущее бытовых видеокамер, но в отличие от последних HDD -камеры уже сейчас могут обеспечить великолепное качество HDV , либо до 20-ти часов записи неплохого качества MPEG 2 на 30-ти Gb диск. Но посмотрим на это великолепие с другой стороны, запись 1 часа формата DV занимает на жестком диске 13-14 Gb , и, произведя нехитрые вычисления, скажите что проще переставить кассету или переписывать в компьютер видео через 2,3-3 часа записи (к хорошему качеству привыкаешь быстро).

HDV -камеры

Высокая цена

DV(miniDV) -камеры

Де-факто основной стандарт домашней видеозаписи

Проблема выбора, в этом стандарте мирно уживаются дешевые «мыльницы» и полупрофессиональные модели

DV(Digital-8) -камеры

Запись и воспроизведение на любые кассеты формата 8

Более продолжительная запись на 1 кассету по сравнению с miniDV

Небольшая распространенность формата

DVD -камеры

Записал, достал диск из камеры, поставил в плеер

Невысокое качество записи

Небольшое время записи на диск

Флэш-камеры

Отсутствие механических частей (за исключением трансфокатора), как следствие более высокая надежность

Невысокое качество записи

HDD -камеры

Гораздо большее время записи по сравнению с кассетными аппаратами

Высокая скорость перезаписи информации на жесткий диск компьютера

Частое «скидывание» видео в компьютер

В «полевых» условиях необходим ноутбук с достаточно большим жестким диском

Высокая цена

1.1.2. Любая цифровая видеокамера использует компрессию (сжатие) оцифрованного видео, потому что на данный момент просто не существует носителей способных выдержать некомпрессированное видео (одна минута несжатого видео PAL 720*576 без звука занимает примерно 1,5 Гб на жестком диске, нехитрые подсчеты позволяют увидеть, что на один час уже потребуется 90 Гб). И еще необходимо обработать этот огромный объем информации, даже простая перезапись 90 Гб потребует около пяти часов. Поэтому производителям видеокамер просто необходимо использовать компрессию оцифрованного видео. Современные видеокамеры используют следующие виды компрессии: DV , MPEG 2, MPEG 4 (DivX , XviD ).

DV – основной вид сжатия видео в современных цифровых видеокамерах, его используют HDV , miniDV , Digital 8 и некоторые HDD -камеры. Высокое качество данного вида компрессии, я думаю, еще долго ведущим среди других форматов.

MPEG 2 – формат, используемый для записи DVD . Хотя и имеет несколько худшее качество записи по сравнению с DV , но в зависимости от битрейта (грубо говоря, количество байтов, выделяемых на одну секунду видео) используя данный вид компрессии можно получить видео достаточно высокого качества (вспомните лицензионные DVD ).

MPEG 4 – честно говоря, производители цифровой аппаратуры (фото и видео) серьезно «подмочили» репутацию данного формата. Чтобы «выжать» из этого формата все возможное необходимо использовать достаточно мощный компьютер и потратить приличное количество времени. Поэтому и получается, что конечное видео в формате MPEG 4 на видеокамерах и фотоаппаратах невысокого разрешения и невысокого (мягко говоря) качества. Что используется DivX или XviD не так уж важно, разницу (небольшую), опять же, можно увидеть лишь при обработке видео на компьютере.

1.1.3. Немаловажное, а скорее основное, влияние на конечный результат оказывает качество матрицы, используемой для оцифровки оптического сигнала, проходящего через линзу видеокамеры. Чем она больше, тем лучше. При выборе видеокамеры не поленитесь заглянуть в спецификацию и посмотреть количество эффективно используемых пикселей («точек» на матрице). Например, в спецификации к видеокамере Sony ХХХХХХХ написано, что при размере кадра 720*576 (0,4 Мегапикселей) для видео используется 2 Мегапикселей матрицы. Естественно это самым положительным образом сказывается на конечном результате, так как при любой кодировке (компрессии) жестко действует закон: чем лучше исходный материал, тем лучше результат, а чем больше света попадет на матрицу, тем меньше будет цифровых шумов, тем в более темное время можно будет использовать видеокамеру и т. д. Все вышесказанное в тройном размере относится к трехматричным камерам, кроме всего прочего система трех матриц позволяет существенно уменьшить цветовые шумы за счет того, что разделение света на цветовые составляющие RGB (обязательное условие для получения видеосигнала) производится не электроникой, а оптической призмой, затем каждая матрица обрабатывает свой цвет.

Косвенно о размере и качестве матрицы можно судить по встроенному в видеокамеру цифровому фотоаппарату, чем больше у него разрешение, тем лучше.

1.1.4. С оптикой видеокамеры все просто: чем больше, тем лучше. Чем больше диаметр объектива, тем больше света попадет на матрицу. Чем больше оптическое увеличение объектива…Впрочем, на этом стоит остановиться поподробнее. Первое что хочется сказать: НИКОГДА не смотрите на гордые надписи на боку видеокамеры (Х120, Х200, Х400 и т. д.). Смотреть нужно только на оптическое увеличение объектива (либо на камере (optical zoom ), либо на самом объективе). Конечно, цифровое увеличение использовать можно, но не стоит забывать, что цифровое увеличение - это ограничение количества эффективно используемых пикселей матрицы (см. рисунок). А всего лишь 2-х кратное цифровое увеличение (например, при 10-ти кратном объективе, это будет 20-ти кратное общее увеличение) приведет к уменьшению эффективно используемых пикселей на матрице в 4 раза!

Ну и неплохо бы иметь оптический стабилизатор, так как в камерах с цифровым стабилизатором используется не вся площадь матрицы.

Веб-камеры

Веб-камеры – это недорогие сетевые стационарные устройства, передающие информацию, обычно видеозапись, по беспроводным или кросскоммутируемым каналам Internet и Ithernet. Основное назначение «комнатных» веб-камер заключается в использовании их для работы с видеопочтой и проведения телеконференций. Широкое применение такие камеры нашли в «беби-ситинге» - они отлично справляются с ролью видеонянь, передавая изображение предоставленного самому себе ребенка. «Уличные» антивандальные веб-камеры выполняют роль охранных видеонаблюдателей. Возможность захвата изображения в режиме видеокамеры или фотоаппарата - это дополнительные возможности веб-камер. Ожидать высокого качества от записываемых видеороликов или цифрового фото в данном случае не стоит. Потому что нет смысла оснащать веб-камеры качественной оптикой и дорогой электроникой - передача видеоданных в режиме реального времени требует невероятно высокой компрессии, неизбежно приводящей к потере качества изображения. Хотя получение шикарной картинки с помощью веб-камер принципиально невозможно, именно качество получаемого изображения является основной характеристикой, позволяющей субъективно сравнивать и выбирать камеры этого типа. Впрочем, на предпочтение также могут повлиять интересный дизайн, программная комплектация и различные опции вроде поддержки скинов и дополнительных коммуникационных интерфейсов. Все веб-камеры оснащены функцией детектора движения и аудиовходом, позволяющим передавать звуковую информацию, их также часто оборудуют разъёмами для подключения различных внешних датчиков и устройств вроде осветительных приборов и сигнализации. Мировая практика показывает, что основными производителя веб-камер становятся компании, изготавливающие компьютерную периферию (Genius , Logitech, SavitMicro) или сетевое оборудование (D-Link , SavitMicro ), а не видео - или фототехнику, что еще раз подчеркивает различие применяемых технологий.

Форматы сжатия видео изображения

В качестве начального шага обработки изображения форматы сжатия MPEG 1 и MPEG 2 разбивают опорные кадры на несколько равных блоков, над которыми затем производится дискетное косинусное преобразование (DCT). По сравнению с MPEG 1, формат сжатия MPEG 2 обеспечивает лучшее разрешение изображения при более высокой скорости передачи видео данных за счет использования новых алгоритмов сжатия и удаления избыточной информации, а также кодирования выходного потока данных. Также формат сжатия MPEG 2 дает возможность выбора уровня сжатия за счет точности квантования. Для видео с разрешением 352х288 пикселей формат сжатия MPEG 1 обеспечивает скорость передачи 1,2 – 3 Мбит/с, а MPEG 2 – до 4 Мбит/с.

По сравнению с MPEG 1, формат сжатия MPEG 2 обладает следующими преимуществами:

Как и JPEG2000, формат сжатия MPEG 2 обеспечивает масштабируемость различных уровней качества изображения в одном видеопотоке.

В формате сжатия MPEG 2 точность векторов движения увеличена до 1/2 пикселя.

Пользователь может выбрать произвольную точность дискретного косинусного преобразования.

В формат сжатия MPEG 2 включены дополнительные режимы прогнозирования.

Формат сжатия MPEG 2 использовал снятый сейчас с производства видеосервер AXIS 250S компании AXIS Communications, 16-канальный видеонакопитель VR-716 компании JVC Professional, видеорегистраторы компании FAST Video Security и многие другие устройства системы видеонаблюдения.

Формат сжатия MPEG 4

MPEG4 использует технологию так называемого фрактального сжатия изображений. Фрактальное (контурно-основанное) сжатие подразумевает выделение из изображения контуров и текстур объектов. Контуры представляются в виде т. н. сплайнов (полиномиальных функций) и кодируются опорными точками. Текстуры могут быть представлены в качестве коэффициентов пространственного частотного преобразования (например, дискретного косинусного или вейвлет-преобразования).

Диапазон скоростей передачи данных, который поддерживает формат сжатия видео изображений MPEG 4, гораздо шире, чем в MPEG 1 и MPEG 2. Дальнейшие разработки специалистов направлены на полную замену методов обработки, используемых форматом MPEG 2. Формат сжатия видео изображений MPEG 4 поддерживает широкий набор стандартов и значений скорости передачи данных. MPEG 4 включает в себя методы прогрессивного и чересстрочного сканирования и поддерживает произвольные значения пространственного разрешения и скорости передачи данных в диапазоне от 5 кбит/с до 10 Мбит/с. В MPEG 4 усовершенствован алгоритм сжатия, качество и эффективность которого повышены при всех поддерживаемых значениях скорости передачи данных. Разработка компании JVC Professional – веб-камера VN-V25U, входящая в линию сетевых устройств works, использует для обработки видео изображений формат сжатия MPEG 4.

Видео форматы

Видео формат определяет структуру видео файла, то как хранится файл на носителе информации(CD, DVD, жестком диске или канале связи). Обычно разные форматы имеют различные расширения файла(*.avi, *. mpg, *.mov и др)

MPG - Видеофайл, в котором содержится видео, закодированное MPEG1 или MPEG2.

Как вы замечали, обычно MPEG-4 фильмы имеют расширение AVI. Формат AVI (Audi o-Video Interleaved) был разработан корпорацией Microsoft для хранения и воспроизведения видеороликов. Представляет собой контейнер, в котором может быть что угодно, начиная от MPEG1 и заканчивая MPEG4. Он может содержать в себе потоки 4 типов - Video, Audio, MIDI, Text. Причем видеопоток может быть только один, тогда как аудио - несколько. В частности, AVI может содержать и только один поток - либо видео, либо аудио. Сам формат AVI не накладывает совершенно никаких ограничений на тип используемого кодека, ни для видео, ни для аудио - они могут быть любыми. Таким образом, в AVI файлах могут совершенно спокойно сочетаться любые видео - и аудиокодеки.

RealVideo формат, созданный компанией RealNetworks. RealVideo используется для живой телевизионной трансляции в Интернете. Например, телекомпания CNN одной из первых стала вещать в Сети. Обладает небольшим размером файла и самым низким качеством, зато вы, не особенно загружая свой канал связи, сможете посмотреть последний выпуск теленовостей на сайте выбранной вами телекомпании. Расширения RM, RA, RAM.

ASF - Потоковый формат от Microsoft.

WMV - Видеофайл, записанный в формате Windows Media.

DAT - Файл, скопированный с VCD(VideoCD)\SVCD диска. Содержит в себе MPEG1\2 видеопоток.

MOV - Формат Apple Quicktime.

Подключение к ПК или телевизору

Самый простой разъем - AV-выход RCA - попросту говоря "тюльпаны" - имеется в любой видеокамере, приспособлен для подключения к любой телевидеотехнике, и обеспечивает передачу аналогового видео с наибольшими потерями в качестве. Гораздо ценнее наличие в цифровых видеокамерах таких аналоговых входов - это позволяет оцифровывать Ваши архивы аналоговых записей, если у Вас прежде цифровой имелась аналоговая видеокамера. В "цифре" продлится срок их хранения, а также появится возможность редактирования их на компьютере. Видеокамеры форматов Hi8, Super VHS (-С), mini-DV (DV) и Digital8 оснащены S-video-разъемом, который, в отличие от RCA, передает раздельно сигналы цветности и яркости, что значительно уменьшает потери, заметно улучшает качество изображения. Наличие S-video-входа в цифровых моделях дает те же преимущества обладателям архивов записей Hi 8 или Super VHS. Встроенный инфракрасный передатчик LaserLink в видеокамерах Sony, с помощью приемного устройства IFT-R20, позволяет смотреть отснятый материал по телевизору, не подключаясь к нему проводами. Просто поставьте видеокамеру рядом с телевизором на расстоянии до 3 м и включайте "PLAY". Более усовершенствованный передатчик Super LaserLink, которым оснащаются все последние модели работает на большем расстоянии (до 7 м). Наличие в видеокамере монтажных разъемов позволяет осуществлять линейный монтаж, синхронизировав видеокамеру с видеомагнитофонами и монтажной декой. В таком случае на всех скомутированных между собой устройствах контролируются синхронно показания счетчика ленты и все основные режимы: воспроизведение, запись, стоп, пауза и перемотка. В видеокамерах Panasonic для этой цели служит разъем Control-M, в видеокамерах Sony - Control-L (LANC). Спецификации их несовместимы, поэтому рекомендуем уточнять соответствие интерфейса у видеомагнитофона и видеокамеры.

Разъем RS-232-C ("цифровой фотовыход")

Разъем для подключения видеокамеры к последовательному порту компьютера для передачи неподвижных кадров в цифровом виде и управления видеокамерой с ПК. В "навороченных" моделях вместо RS-232-C встроен еще более быстрый "фотовыход" - USB-интерфейс. Все видеокамеры mini-DV и Digital8 оснащены DV-выходом (i. LINK или IEEE 1394 или FireWire), обеспечивающим быструю передачу цифрового аудио/видеосигнала без потерь качества. Для этого Вам необходимо иметь другое устройство с поддержкой DV-формата - DV-видеомагнитофон или компьютер с DV-платой. Ценнее конечно же видеокамеры, имеющие, кроме выхода, также DV-вход. Некоторые фирмы производят одну и ту же модель в двух вариантах: т. н. "европейском" (без входов) и "азиатском" (с входами). Это объясняется высокими таможенными пошлинами в Европе на импорт цифровых видеомагнитофонов, к каковым справедливо можно отнести и видеокамеру с DV-входом. IEEE-1394, FireWire и i. LINK - это три названия одного и того же высокоскоростного цифрового последовательного интерфейса, который служит для передачи любых видов цифровой информации. IEEE-1394 (IEEE - Institute of Electrical and Electronics Engineers) Обозначение стандарта интерфейса, разработанного корпорацией Apple (под фирменным названием FireWire). Обозначение принято американским Институтом инженеров по электротехнике и радиоэлектронике (IEEE). Большинство видеокамер mini-DV и Digital8 оборудованы интерфейсом IEEE-1394, с помощью которого видеоинформация, представленная в цифровой форме, пересылается непосредственно на компьютер. Аппаратная часть включает в себя недорогой адаптер и четырехжильный или шестижильный кабель. Позволяет передавать данные со скоростью до 400 Мбит/с.

i. LINK

Цифровой вход/выход на базе стандарта IEEE 1394. Позволяет передавать отснятый видеоматериал на компьютер. Модели видеокамер с i. Link повышают гибкость работы за счет интерактивного монтажа, электронного хранения и рассылки изображений.

FireWire

Зарегистрированный товарный знак фирмы Apple, принимавшей активное участие в разработке стандарта. Название FireWire ("огненный провод") принадлежит фирме Apple и может использоваться только для описания ее изделий, а по отношению к таким устройствам на PC принято употреблять термин IEEE-1394, то есть непосредственно название стандарта;

Карта памяти

На этой карте Вы можете хранить в электронном виде фотографии, видеоролики, музыку. С ее помощью можно передавать изображение на компьютер.

Memory Stick

Карта памяти Memory Stick - фирменная разработка Sony - способна хранить одновременно записи изображения, речи, музыки, графики и текстовые файлы. Весом всего 4 грамма и по размеру не превосходящая пластинки жвачки, карта памяти надежна, имеет защиту от случайного стирания, 10-штырьковое соединение для большей надежности, частоту передачи данных - 20 МГц, скорость записи - 1,5 Мб/сек., скорость чтения - 2,45 Мб/сек. Вместимость цифровых стоп-кадров на карте емкостью 4 Мб (MSA-4A): в формате JPEG 640x480 режим SuperFine - 20 кадров, Fine - 40 кадров, Standard - 60 кадров; в формате JPEG 1152x864 режим SuperFine - 6 кадров, Fine - 12 кадров, Standard - 18 кадров. Вместимость MPEG Movies на карте емкостью 4 Мб (MSA-4A): в режиме Presentation (320x2,6 по 15 секунд; в режиме Video Mail (160x1,6 по 60 секунд.

SD Memory Card

SD-карта - карта памяти нового стандарта размером с почтовую марку позволяет хранить любые виды данных, включая разнообразные фото-, видео - и аудиоформаты. На данный момент доступны SD-карты емкостью 64, 32, 16 и 8 МB. До конца 2001 года в продажу поступят SD-карты емкостью до 256 МB. Одна SD-карта емкостью 64 Mb содержит примерно такое же количество музыки, как один CD-диск. Так как скорость передачи данных на SD-карту - 2 Мб/сек., перезапись с CD-диска займет всего 30 секунд. Поскольку SD Memory Card - это полупроводниковый носитель информации, вибрация не оказывает на нее никакого влияния, то есть здесь невозможен пропуск в звучании, встречающийся у вращающихся носителей типа CD или MD. Максимальное время звуковой записи на SD-карту 64 Mb: 64 минуты высокого качества (128 кбит/сек), 86 минут стандартного (96 кбит/сек) или 129 минут в LP-режиме (64 кбит/сек).

Если заметили ошибку, выделите фрагмент текста и нажмите Ctrl+Enter
ПОДЕЛИТЬСЯ: