Windows. Вирусы. Ноутбуки. Интернет. Office. Утилиты. Драйверы

Стек NetBIOS/SMB

Фирмы Microsoft и IBM совместно работали над сетевыми средствами для персональных компьютеров, поэтому стек протоколов NetBIOS/SMB является их совместным детищем. Средства NetBIOS появились в 1984 году как сетевое расширение стандартных функций базовой системы ввода/вывода (BIOS) IBM PC для сетевой программы PC Network фирмы IBM, которая на прикладном уровне (рис. 3) использовала для реализации сетевых сервисов протокол SMB.

Рис. 3. Стек NetBIOS/SMB

Протокол NetBIOS работает на трех уровнях модели взаимодействия открытых систем: сетевом, транспортном и сеансовом . NetBIOS может обеспечить сервис более высокого уровня, чем протоколы IPX и SPX, однако не обладает способностью к маршрутизации. Таким образом, NetBIOS не является сетевым протоколом в строгом смысле этого слова. NetBIOS содержит много полезных сетевых функций, которые можно отнести к сетевому, транспортному и сеансовому уровням, однако с его помощью невозможна маршрутизация пакетов, так как в протоколе обмена кадрами NetBIOS не вводится такое понятие как сеть. Это ограничивает применение протокола NetBIOS локальными сетями, не разделенными на подсети. NetBIOS поддерживает как дейтаграммный обмен, так и обмен с установлением соединений.

Протокол SMB , соответствующий прикладному и представительному уровням модели OSI, регламентирует взаимодействие рабочей станции с сервером. В функции SMB входят следующие операции:

Управление сессиями. Создание и разрыв логического канала между рабочей станцией и сетевыми ресурсами файлового сервера.

Файловый доступ. Рабочая станция может обратиться к файл-серверу с запросами на создание и удаление каталогов, создание, открытие и закрытие файлов, чтение и запись в файлы, переименование и удаление файлов, поиск файлов, получение и установку файловых атрибутов, блокирование записей.

Сервис печати. Рабочая станция может ставить файлы в очередь для печати на сервере и получать информацию об очереди печати.

Сервис сообщений. SMB поддерживает простую передачу сообщений со следующими функциями: послать простое сообщение; послать широковещательное сообщение; послать начало блока сообщений; послать текст блока сообщений; послать конец блока сообщений; переслать имя пользователя; отменить пересылку; получить имя машины.

Из-за большого количества приложений, которые используют функции API, предоставляемые NetBIOS, во многих сетевых ОС эти функции реализованы в виде интерфейса к своим транспортным протоколам. В NetWare имеется программа, которая эмулирует функции NetBIOS на основе протокола IPX, существуют программные эмуляторы NetBIOS для Windows NT и стека TCP/IP.


Стек TCP/IP

Стек TCP/IP, называемый также стеком DoD и стеком Internet, является одним из наиболее популярных стеков коммуникационных протоколов. Стек был разработан по инициативе Министерства обороны США (Department of Defence, DoD) для связи экспериментальной сети ARPAnet с другими сателлитными сетями как набор общих протоколов для разнородной вычислительной среды. Сеть ARPA поддерживала разработчиков и исследователей в военных областях. В сети ARPA связь между двумя компьютерами осуществлялась с использованием протокола Internet Protocol (IP), который и по сей день является основным в стеке TCP/IP и фигурирует в названии стека.

Большой вклад в развитие стека TCP/IP внес университет Беркли, реализовав протоколы стека в своей версии ОС UNIX. Широкое распространение ОС UNIX привело и к широкому распространению протокола IP и других протоколов стека. На этом же стеке работает всемирная информационная сеть Internet, чье подразделение Internet Engineering Task Force (IETF) вносит основной вклад в совершенствование стандартов стека, публикуемых в форме спецификаций RFC.

Так как стек TCP/IP был разработан до появления модели взаимодействия открытых систем ISO/OSI, то, хотя он также имеет многоуровневую структуру, соответствие уровней стека TCP/IP уровням модели OSI достаточно условно.

Структура протоколов TCP/IP приведена на рисунке 4. Протоколы TCP/IP делятся на 4 уровня.

Рис. 4. Стек TCP/IP

Самый нижний (уровень IV) - уровень межсетевых интерфейсов - соответствует физическому и канальному уровням модели OSI. Этот уровень в протоколах TCP/IP не регламентируется, но поддерживает все популярные стандарты физического и канального уровня: для локальных каналов это Ethernet, Token Ring, FDDI, для глобальных каналов - собственные протоколы работы на аналоговых коммутируемых и выделенных линиях SLIP/PPP, которые устанавливают соединения типа "точка - точка" через последовательные каналы глобальных сетей, и протоколы территориальных сетей X.25 и ISDN. Разработана также специальная спецификация, определяющая использование технологии ATM в качестве транспорта канального уровня.

Следующий уровень (уровень III) - это уровень межсетевого взаимодействия, который занимается передачей дейтаграмм с использованием различных локальных сетей, территориальных сетей X.25, линий специальной связи и т. п. В качестве основного протокола сетевого уровня (в терминах модели OSI) в стеке используется протокол IP , который изначально проектировался как протокол передачи пакетов в составных сетях, состоящих из большого количества локальных сетей, объединенных как локальными, так и глобальными связями. Поэтому протокол IP хорошо работает в сетях со сложной топологией, рационально используя наличие в них подсистем и экономно расходуя пропускную способность низкоскоростных линий связи. Протокол IP является дейтаграммным протоколом.

К уровню межсетевого взаимодействия относятся и все протоколы, связанные с составлением и модификацией таблиц маршрутизации, такие как протоколы сбора маршрутной информации RIP (Routing Internet Protocol) и OSPF (Open Shortest Path First), а также протокол межсетевых управляющих сообщений ICMP (Internet Control Message Protocol). Последний протокол предназначен для обмена информацией об ошибках между маршрутизатором и шлюзом, системой-источником и системой-приемником, то есть для организации обратной связи. С помощью специальных пакетов ICMP сообщается о невозможности доставки пакета, о превышении времени жизни или продолжительности сборки пакета из фрагментов, об аномальных величинах параметров, об изменении маршрута пересылки и типа обслуживания, о состоянии системы и т.п.

Следующий уровень (уровень II) называется основным. На этом уровне функционируют протокол управления передачей TCP (Transmission Control Protocol) и протокол дейтаграмм пользователя UDP (User Datagram Protocol). Протокол TCP обеспечивает устойчивое виртуальное соединение между удаленными прикладными процессами. Протокол UDP обеспечивает передачу прикладных пакетов дейтаграммным методом, то есть без установления виртуального соединения, и поэтому требует меньших накладных расходов, чем TCP.

Верхний уровень (уровень I) называется прикладным. За долгие годы использования в сетях различных стран и организаций стек TCP/IP накопил большое количество протоколов и сервисов прикладного уровня: протокол копирования файлов FTP, протоколы удаленного управления telnet и ssh, почтовый протокол SMTP, гипертекстовые сервисы доступа к удаленной информации, такие как WWW и многие другие. Кратко остановимся на некоторых из протоколов стека, наиболее тесно связанных с тематикой данного курса.

Протокол SNMP (Simple Network Management Protocol) используется для организации сетевого управления. Проблема управления разделяется здесь на две задачи. Первая задача связана с передачей информации. Протоколы передачи управляющей информации определяют процедуру взаимодействия сервера с программой-клиентом, работающей на хосте администратора. Они определяют форматы сообщений, которыми обмениваются клиенты и серверы, а также форматы имен и адресов. Вторая задача связана с контролируемыми данными. Стандарты регламентируют, какие данные должны сохраняться и накапливаться в шлюзах, имена этих данных и синтаксис этих имен. В стандарте SNMP определена спецификация информационной базы данных управления сетью. Эта спецификация, известная как база данных MIB (Management Information Base), определяет те элементы данных, которые хост или шлюз должен сохранять, и допустимые операции над ними.

Протокол пересылки файлов FTP (File Transfer Protocol) реализует удаленный доступ к файлу. Для того, чтобы обеспечить надежную передачу, FTP использует в качестве транспорта протокол с установлением соединений - TCP. Кроме пересылки файлов протокол, FTP предлагает и другие услуги. Так пользователю предоставляется возможность интерактивной работы с удаленной машиной, например, он может распечатать содержимое ее каталогов, FTP позволяет пользователю указывать тип и формат запоминаемых данных. Наконец, FTP выполняет аутентификацию пользователей. Прежде, чем получить доступ к файлу, в соответствии с протоколом пользователи должны сообщить свое имя и пароль.

В стеке TCP/IP протокол FTP предлагает наиболее широкий набор услуг для работы с файлами, однако он является и самым сложным для программирования. Приложения, которым не требуются все возможности FTP, могут использовать другой, более экономичный протокол - простейший протокол пересылки файлов TFTP (Trivial File Transfer Protocol). Этот протокол реализует только передачу файлов, причем в качестве транспорта используется более простой, чем TCP, протокол без установления соединения - UDP.

Протокол telnet обеспечивает передачу потока байтов между процессами, а также между процессом и терминалом. Наиболее часто этот протокол используется для эмуляции терминала удаленной ЭВМ.

Стек протоколов - это иерархически организованный набор сетевых протоколов , достаточный для организации взаимодействия узлов в сети. Протоколы работают в сети одновременно, значит работа протоколов должна быть организована так, чтобы не возникало конфликтов или незавершённых операций. Поэтому стек протоколов разбивается на иерархически построенные уровни, каждый из которых выполняет конкретную задачу - подготовку, приём, передачу данных и последующие действия с ними.

Количество уровней в стеке меняется в соответствии с конкретным стеком протоколов. Протоколы нижних уровней часто реализуются комбинацией программных и аппаратных средств, а протоколы верхних уровней, как правило, программными средствами.

Существует достаточное количество стеков протоколов, широко применяемых в сетях. Наиболее популярные стеки протоколов: OSI международной организации по стандартизации , TCP/IP , используемый в сети Internet и во многих сетях на основе операционной системы UNIX , IPX/SPX фирмы Novell, NetBIOS/SMB, разработанный фирмами Microsoft и IBM , DECnet корпорации Digital Equipment , SNA фирмы IBM и некоторые другие.

Энциклопедичный YouTube

    1 / 3

    Основы сетей передачи данных. Модель OSI и стек протоколов TCP IP. Основы Ethernet.

    Стек протоколов

    Информатика. Сетевые технологии: Стек протоколов OSI. Центр онлайн-обучения «Фоксфорд»

    Субтитры

Стандартные стеки коммуникационных протоколов

OSI

Важно различать модель OSI и стек протоколов OSI. В то время как модель OSI является концептуальной схемой взаимодействия открытых систем, стек OSI представляет собой набор спецификаций конкретных протоколов.

В отличие от других стеков протоколов, стек OSI полностью соответствует модели OSI, включая спецификации протоколов для всех семи уровней взаимодействия, определённых в этой модели:

  • На физическом и канальном уровнях стек OSI поддерживает протоколы Ethernet , Token ring , FDDI , а также протоколы LLC , X.25 и ISDN , то есть использует все разработанные вне стека популярные протоколы нижних уровней, как и большинство других стеков.
  • Сетевой уровень включает сравнительно редко используемые протоколы Connection-oriented Network Protocol (CONP) и Connectionless Network Protocol (CLNP). Как следует из названий, первый из них ориентирован на соединение (connection-oriented), второй - нет (connectionless). Более популярны протоколы маршрутизации стека OSI: ES-IS (End System - Intermediate System) между конечной и промежуточной системами и IS-IS (Intermediate System - Intermediate System) между промежуточными системами.
  • Транспортный уровень стека OSI в соответствии с функциями, определёнными для него в модели OSI, скрывает различия между сетевыми сервисами с установлением соединения и без установления соединения, так что пользователи получают требуемое качество обслуживания независимо от нижележащего сетевого уровня. Чтобы обеспечить это, транспортный уровень требует, чтобы пользователь задал нужное количество обслуживания.
  • Службы прикладного уровня обеспечивают передачу файлов, эмуляцию терминала , службу каталогов и почту . Из них наиболее популярными являются служба каталогов (стандарт X.500), электронная почта (стандарт X.400), протокол виртуального терминала (VTP), протокол передачи, доступа и управления файлами (FTAM), протокол пересылки и управления работами (JTM).

TCP/IP

Стек протоколов TCP/IP - набор сетевых протоколов, на которых базируется Интернет . Обычно в стеке TCP/IP верхние 3 уровня (прикладной , представления и сеансовый) модели OSI объединяют в один - прикладной. Поскольку в таком стеке не предусматривается унифицированный протокол передачи данных, функции по определению типа данных передаются приложению.

Уровни стека TCP/IP:

  1. Канальный уровень описывает каким образом передаются пакеты данных через физический уровень, включая кодирование (то есть специальные последовательности битов, определяющих начало и конец пакета данных).
  2. Сетевой уровень изначально разработан для передачи данных из одной (под)сети в другую. Примерами такого протокола является X.25 и IPC в сети ARPANET . С развитием концепции глобальной сети в уровень были внесены дополнительные возможности по передаче из любой сети в любую сеть, независимо от протоколов нижнего уровня, а также возможность запрашивать данные от удалённой стороны.
  3. Протоколы транспортного уровня могут решать проблему негарантированной доставки сообщений («дошло ли сообщение до адресата?»), а также гарантировать правильную последовательность прихода данных.
  4. На прикладном уровне работает большинство сетевых приложений. Эти программы имеют свои собственные протоколы обмена информацией, например, HTTP для WWW , FTP (передача файлов), SMTP (электронная почта), SSH (безопасное соединение с удалённой машиной), DNS (преобразование символьных имён в IP-адресa) и многие другие.

Существуют разногласия в том, как вписать модель TCP/IP в модель OSI, поскольку уровни в этих моделях не совпадают. Упрощённо интерпретацию стека TCP/IP можно представить так:

OSI TCP/IP
7. Прикладной HTTP, FTP, Telnet , SMTP, DNS (RIP , работающий поверх UDP , и BGP , работающий поверх TCP , являются частью сетевого уровня), LDAP Прикладной
6. Представления
5. Сеансовый
4. Транспортный TCP, UDP, RTP , NCP) и протокол объявления о сервисах Service Advertising Protocol (SAP).

NetBIOS/SMB

На физическом и канальном уровнях этого стека также задействованы уже получившие распространение протоколы, такие как Ethernet, Token Ring, FDDI, а на верхних уровнях - специфические протоколы NetBEUI (протокол расширенного пользовательского интерфейса NetBEUI - NetBIOS Extended User Interface) и SMB . NetBEUI разрабатывался как эффективный протокол, потребляющий немного ресурсов и предназначенный для сетей, насчитывающих не более 200 рабочих станций. Этот протокол содержит много полезных сетевых функций, которые можно отнести к транспортному и сеансовому уровням модели OSI, однако с его помощью невозможна маршрутизация пакетов. Это ограничивает применение протокола NetBEUI локальными сетями, не разделёнными на подсети, и делает невозможным его использование в составных сетях.

Протокол Server Message Block (SMB) поддерживает функции сеансового уровня, уровня представления и прикладного уровня. На основе SMB реализуется файловая служба. а также службы печати и передачи сообщений между приложениями.

Транспортный уровень (Transport Layer - TL) определяет правила транспортировки пакетов по сети. Транспортный уровень наблюдает за доставкой из конца в конец индивидуальных пакетов, он не учитывает никаких зависимостей между этими пакетами (даже принадлежащими к одному сообщению). Он обрабатывает каждый пакет как если бы каждая часть принадлежала отдельному сообщению, независимо от того, так это на самом деле или нет. Протоколы транспортного уровня гарантируют, что все сообщения прибывают в конечный пункт неповрежденными и пакеты располагаются в первоначальном порядке. На транспортном уровне осуществляется контроль нарушения информации и контроль ошибок, а также управление потоком по всему тракту "источник - пункт назначения".

Транспортный уровень выполняет следующие задачи:

  • Адресация точки сервиса . Компьютеры часто выполняют несколько программ в одно и то же время. По этой причине доставка "источник - пункт назначения" означает доставку не только от одного компьютера до следующего, но также и от заданного процесса (функционирующей программы) на одном компьютере к заданному процессу (функционирующей программе) на другом. Поэтому заголовок транспортного уровня должен включать тип адреса, называемый адрес сервисной точки (или адрес порта). Сетевой уровень доставляет каждый пакет на корректный адрес компьютера; транспортный уровень доставляет полное сообщение к корректному процессу на этом компьютере.
  • Сегментация и повторная сборка . Сообщение разделено на транспортируемые сегменты, каждый сегмент содержит порядковый номер. Эти номера дают возможность транспортному уровню после достижения пункта назначения правильно повторно собрать сообщение и заменять пакеты, которые были потеряны в передаче.
  • Управление подключением . Транспортный уровень может быть ориентирован на работу без установления соединения ( connectionless transfer) или ориентирован на подключение ( connection-oriented transfer) - дейтаграммный режим. Транспортный уровень без установления соединения (по предварительно установленному виртуальному соединению) обрабатывает каждый сегмент как независимый пакет и поставляет его транспортному уровню в машине пункта назначения. Ориентированный на подключение транспортный уровень сначала перед поставкой пакетов устанавливает соединение с транспортным уровнем в компьютере пункта назначения. После того как все данные переданы, подключение заканчивается.

    В режиме, не ориентированном на соединение, транспортный уровень используется для передачи одиночных дейтаграмм, не гарантируя их надежную доставку. Режим, ориентированный на соединение, применяется для надежной доставки данных.

  • Управление потоком . Подобно уровню звена передачи данных, транспортный уровень несет ответственность за управление потоком. Однако управление потоком на этом уровне выполняется от "конца концу".
  • Контроль ошибок . Подобно уровню звена передачи данных, транспортный уровень несет ответственность за контроль ошибок. Транспортный уровень передачи удостоверяется, что полное сообщение достигло транспортного уровня приема без ошибки (повреждения, потери или дублирования). Исправление ошибки обычно происходит с помощью повторной передачи.

Уровень сеанса (Session Layer SL) - сетевой контроллер диалога. Он устанавливает, поддерживает и синхронизирует взаимодействие между связывающимися системами.

При помощи сеансового уровня ( Session Layer ) организуется диалог между сторонами, фиксируется, какая из сторон является инициатором, какая из сторон активна и каким образом завершается диалог.

Задачи сеансового уровня следующие:

  • Управление диалогом . Сеансовый уровень дает возможность двум системам вступать в диалог. Он позволяет обмен сообщениями между двумя процессами. При этом возможны режимы: либо полудуплексный (один путь одновременно), либо дуплексный (два пути одновременно). Например, диалог между терминалом и универсальной ЭВМ может быть полудуплексным.
  • Синхронизация . Сеансовый уровень позволяет процессу добавлять контрольные точки (точки синхронизации) в поток данных. Например, если система посылает файл из 2 000 страниц, желательно вставить контрольные точки после каждых 100 страниц, чтобы гарантировать, что каждый модуль со 100 страницами получен и опознается независимо. В этом случае, если случается нарушение в течение передачи страницы 523, единственная страница, которую требуется и которая будет снова послана после системного восстановления - страница 501 (первая страница пятой сотни)

Уровень представления (Presentation Layer) занимается формой предоставления информации нижележащим уровням, например, перекодировкой или шифрованием информации.

Задачи уровня представления следующие:

  • Перекодировка информации . Процессы (функционирующие программы) в двух системах обычно меняют информацию в форме символьных строк, чисел и так далее. Информация, прежде чем быть переданной, должна быть изменена на потоки бит. Поскольку различные компьютеры используют различные системы кодирования, уровень представления несет ответственность за способность к взаимодействию между этими различными методами кодирования. Уровень представления в передатчике изменяет информацию от формы, зависящей от передатчика, в общую форму. Уровень представления в компьютере приема заменяет общий формат в формат его приемника.
  • Шифрование . Чтобы доставлять конфиденциальную информацию, система должна обеспечить секретность. Шифрование означает, что передатчик преобразовывает первоначальную информацию к другой форме и посылает результирующее сообщение по сети. Расшифровка должна быть полностью противоположна первоначальному процессу, чтобы преобразовать сообщение назад к его первоначальной форме.
  • Сжатие . Сжатие данных уменьшает число битов, содержавшихся в информации. Сжатие данных становится особенно важным в передаче мультимедиа, таких как текст, аудио и видео.

Прикладной уровень (Application Layer - AL) - это набор протоколов, которыми обмениваются удаленные узлы, реализующие одну и ту же задачу (программу). Прикладной уровень дает возможность пользователю (человеку либо программному обеспечению) обращаться к сети. Он обеспечивает интерфейсы пользователя и поддержку услуг - электронной почты, удаленного доступа и перевода средств, общедоступного управления базы данных и других типов распределенных информационных служб.

Примеры услуг, оказываемых прикладным уровнем:

  • Сетевой виртуальный терминал . Сетевой виртуальный терминал - программная версия физического терминала, он позволяет пользователю войти в удаленный хост. Чтобы сделать это, приложение создает программную имитацию терминала в удаленном хосте. Компьютер пользователя общается с программным терминалом, который, в свою очередь, общается с хостом, и наоборот. Удаленный хост определяет эту связь как связь с одним из его собственных терминалов и позволяет вход.
  • Передача файлов, доступ и управление . Это приложение позволяет пользователю обращаться к файлам в удаленном хосте, чтобы изменять или читать данные, извлекать файлы из удаленного компьютера для использования в местном компьютере и администрировать или управлять файлами на удаленном компьютере.
  • Услуги почты . Это приложение обеспечивает базу для передачи и хранения электронной почты.
  • Услуги каталога . Это приложение обеспечивает распределенные источники базы данных и доступ к глобальной информации о различных объектах и услугах.

Стек протоколов Интернета

Стек протоколов сети Интернет2 был разработан до модели OSI . Поэтому уровни в стеке протоколов Интернета не соответствуют аналогичным уровням в модели OSI . Стек протоколов Интернета состоит из пяти уровней: физического, звена передачи данных, сети, транспортного и прикладного. Первые четыре уровня обеспечивают физические стандарты, сетевой интерфейс , межсетевое взаимодействие и транспортные функции, которые соответствуют первым четырем уровням модели OSI . Три самых верхних уровня в модели OSI представлены в стеке протоколов Интернета единственным уровнем, называемым прикладным уровнем рис. 1.3.


Рис. 1.3.

ARP Address Resolution Protocol Протокол нахождения адреса
ATM Asynchronous Transfer Mode Режим асинхронной передачи
BGP Border Gateway Protocol Протокол пограничной маршрутизации
DNS Domain Name System Система доменных имен
Ethernet Ethernet Network Сеть Ethernet
FDDI Fiber Distributed Data Interface Волоконно-оптический распределенный интерфейс данных
HTTP Hyper Text Transfer Protocol Протокол передачи гипертекста
FTP File transfer Protocol Протокол передачи файлов
ICMP Internet Control Message Protocol Протокол управляющих сообщений
IGMP Internet Group Management Protocol Протокол управления группами (пользователей) в Интернете
IP Internet Protocol Межсетевой протокол
NFS Network File System Протокол сетевого доступа к файловым системам
OSPF Open Shortest Path First Открытый протокол предпочтения кратчайшего канала
PDH Plesiochronous Digital Hierarchy Плезиохронная цифровая иерархия
PPP Point-to- Point Protocol Протокол связи "точка-точка"

Сетевой стек протокола и TCP хакинг

Alexander Antipov

Сетевой стек протоколов, формирующий конвейеризацию и передачу данных между хостами, разработан для наилучшего взаимодействия между различными сетевыми уровнями. В этой статье мы попытаемся описать перемещение данных через расположенные в стеке уровни и попробуем внедрить модуль ядра Linux, помогающий нам захватывать и отображать данные, проходящие через уровень TCP. Ниже представлена программа, показывающая как установить новый элемент в файловой системе proc. И что наиболее важно, эта программа взламывает TCP протокол, отслеживает все данные, проходящие через tcp уровень, и отображает их в /proc/TCPdata.


Шямитх, перевод Алексей Антипов

Сетевой стек протоколов, формирующий конвейеризацию и передачу данных между хостами, разработан для наилучшего взаимодействия между различными сетевыми уровнями. В этой статье мы попытаемся описать перемещение данных через расположенные в стеке уровни и попробуем внедрить модуль ядра Linux, помогающий нам захватывать и отображать данные, проходящие через уровень TCP. Так как обсуждение всех видов сетевых соединений выходит за рамки данной статьи, то мы остановимся на TCP/IP соединениях.

Сетевой стек протоколов

Сетевые устройства формируют базовый уровень стека протоколов. Для связи с другими устройствами и приема-передачи трафика они используют протокол канала передачи данных (обычно Ethernet). Интерфейс, организуемый драйверами сетевых устройств, копирует пакеты с физической среды, выполняя некоторые проверки ошибок, после чего помещает пакеты в сетевой уровень. Интерфейсы вывода принимают пакеты из сетевого уровня, выполняют некоторые проверки ошибок и пересылают их в физическую среду. Мы будем обсуждать IP (протокол Интернет) являющийся стандартным протоколом сетевого уровня. Главными функциями IP являются маршрутизация, проверка входящих пакетов, определяющая направлены ли эти пакеты на данный хост или они нуждаются в дальнейшей пересылке. При этом, в случае необходимости, пакеты дефрагментируются и доставляются на транспортные протоколы. Такие протоколы имеют динамическую базу данных маршрутов для исходящих пакетов, адресуют и фрагментируют их перед посылкой на уровень связи.

TCP и UDP являются наиболее часто используемыми протоколами транспортного уровня. UDP создает структуру для адресации пакетов в пределах хоста, в то время как TCP поддерживает более комплексные операции подключения типа восстановления потерянных пакетов и управления трафиком.

Продвигаясь по транспортному уровню, мы можем найти INET уровень, формирующий промежуточный уровень между транспортным уровнем и сокетами приложений. С помощью INET уровня поддерживаются принадлежащие приложениям сокеты. В этом уровне осуществлены все специфические операции сокетов.

BSD - абстрактная структура данных, содержащая INET сокеты. Запрос приложения на подключение, чтение или запись через сокет, преобразовывается в INET операции с помощью BSD.

Общая структура пакетов. Данные заключаются в общую структуру данных, называемую sk_buff. Все уровни используют эту структуру данных. Сразу после копирования данных из пространства пользователя в пространство ядра, они помещаются в sk_buff и перемещаются на различные уровни. В свою очередь уровень добавляют к этой структуре свои заголовки. Sk_buff содержит ссылки на всю информацию о пакете, его сокете, устройстве, маршруте, расположении данных и т.д.

Сетевые функции Linux

Для нормального сетевого программиста, интерфейсная часть сетевых служб доступна с помощью следующих подпрограмм библиотеки С.

socket(), bind(), listen(), connect(), accept(), send(), sendto(), recv(), recvfrom(), getsockopt(), and setsockopt().

Функция socket() используется для создания нового сокета. Все операции с различными протоколами происходят с помощью сокетов. Поскольку функция socket() возвращает значение дескриптора файла, то к нему могут обращаться стандартные операции работы с файлами типа read(), write().

Фунция bind() используется для связи созданного сокета с портом. Порт, наряду с IP адресом сетевого интерфейса, используется для уникальной идентификации сокета.

Функция listen() используется для программирования сервера. После создания сокета и связи его с портом функция listen() устанавливает сокет в состояние прослушивания. Это означает, что сокет ожидает подключения со стороны других хостов.

При вызове на сервере функции accept() происходит непрерывный опрос сокета происходящий до получения запроса на подключение от другого хоста. После установления соединения серверная программа пробуждается и дает процессу возможность обрабатывать запрос от чужого хоста. Со стороны клиента используется функция connect(), показывающая серверу, что клиент желает открыть подключение на сокете и послать запрос.

Необходимые структуры данных

Эта структура является основой для выполнения интерфейса BSD сокетов. Установка и инициализация этой структуры происходит при помощи системного вызова socket().

sk_buff:

Эта структура управляет индивидуальными пакетами соединений приходящими и отсылаемыми с хоста. При этом происходит буферизация ввода-вывода.

Эта структура управляет различными частями сокетов, зависящими от конкретной сети. Она необходима для TCP, UDP и RAW сокетов.

Эта структура содержит ряд операций, одинаковых для всех протоколов.

Sockaddr (sockaddr_in):

Такая структура необходима для поддержки различных форматов адресов.

Модули ядра Linux

Ядра Linux ядра состоят из модулей. Некоторые части ядра находятся в памяти постоянно (типа планировщика), а некоторые загружаются при необходимости. Например, файловая система VFAT для чтения дисков, загружается только при необходимости. Такая особенность linux ядра позволяет пространству ядра занимать немного места.

Таким образом, существенным является проектирование вашего протокола, драйверов и любых видов программного обеспечения ядра как модулей ядра и вставлять их в ядро из пространства пользователя. После вставки, модуль становиться неперемещаемым до его удаления из пространства ядра. Единственно вы должны быть привилегированным пользователем, чтобы вставлять или удалять модули. Это является общим форматом записи модуля ядра.

#define MODULE #include /* ... other required header files ... */ /* * ... module declarations and functions ... */ int init_module() { /* code kernel will call when installing module */ } void cleanup_module() { /* code kernel will call when removing module */}

Проект хакерского модуля для TCP протокола.

Наш модуль ядра является очень простым, он виртуально размещен между интерфейсом операций сокетов для пересылки TCP пакетов и TCP уровнем. Теперь все пакеты данных, проходящие через сокет, зарегистрированный с TCP протоколом, будут перехвачены нашим модулем ядра. Эти данные будут переданы в /proc/TCPdata.

Используемые структуры данных

tcp_prot -> Содержит указатели на все осуществленные TCP операции

struct msghdr -> Содержит данные, посылаемые приложением, а также другими полями для идентификации адреса сокета

Struct msg_iov -> находится в msghdr, в нем содержатся указатели на данные

Перед началом кодирования давайте поймем значение файловой системы /proc. Файловая система proc называется так, из-за того что она находиться в каталоге /proc на большинстве Linux машин. Система является мощным инструментом, часто используемым приложениями. Это часть механизма при помощи которого ядро связывается с пространством пользователя и наоборот. Хотя она разработана как файловая система со структурой каталогов и inodes, в тоже время это фактически компонент зарегистрированных функций, обеспечивающих информацией важные переменные.

При создании файла в /proc, он сразу регистрируется с набором функций, сообщающих ядру, что необходимо делать при открытии этого файла или записи в него. Большинство файлов поддерживают только чтение, и лишь некоторые поддерживают запись.

Теперь мы начнем кодирование

/* tcpdata.c. Ниже представлена программа, показывающая как установить новый элемент в файловой системе proc. И что наиболее важно, эта программа взламывает TCP протокол, отслеживает все данные, проходящие через tcp уровень, и отображает их в /proc/TCPdata. */ #define MODULE #define __KERNEL__ /*we are doing kernel work*/ #include #include #include /*for registering proc entry*/ #include #include #include #include #include #include #include static struct proc_dir_entry *test_entry; struct msghdr *msg_moniter; struct iovec *iovec_moniter; static char *tcp="Tcp monitered data"; int (*orginalSend)(struct sock *, struct msghdr *,int); /* show_tcp_stats This function is what the /proc FS will call when anything tries to read /proc/TCPstat you could see last 200 bytes move out of the sockets through tcp connections */ static int show_tcp_stats(char *buf,char **start,off_t offset,int len,int unused) { len += sprintf(buf+len,"%s\n",tcp); return len; } /* Это функция обработчика, захватывающая tcp sendmsg запросы */ int moniter_tcp(struct sock *sk, struct msghdr *msg,int len) { int size; char *temp; printk("I am dangerously monitoring your tcp data \n"); msg_moniter=(struct msghdr *)kmalloc(sizeof(struct msghdr),GFP_KERNEL); memcpy(msg_moniter,msg,sizeof(struct msghdr)); orginalSend(sk,msg,len); iovec_moniter=msg_moniter->msg_iov; size=sizeof(tcp); printk("sizeof of TCPdat is %d \n",size); (sizeiov_base):strcpy(tcp,"Tcp monitered data"); kfree(msg_moniter); return len; } /* init_module Данная функция устанавливает модуль; она просто регистрирует новый каталог в /proc и создает указатель. */ int init_module() { test_entry=create_proc_entry("TCPdata",S_IRUGO,NULL); test_entry->read_proc=show_tcp_stats; orginalSend=tcp_prot.sendmsg; /* printk("the address of send send mes is %x \n",tcp_prot.sendmsg); printk("the address of hack mes is %x \n",orginalSend); */ tcp_prot.sendmsg=moniter_tcp; /* printk("the address of send send mes after hacking %x \n",tcp_prot.sendmsg); printk("the address of send send mes after hacking %x \n",moniter_tcp); */ return 0; } /* init_module */ /* cleanup_module Данная функция удаляет модуль; Она удаляет регистрацию записи директории из /proc FS */ void cleanup_module() { /* put the pointer back to tcp"s orginal message sender */ tcp_prot.sendmsg=orginalSend; /* unregister the function from the proc FS */ remove_proc_entry("TCPdata",NULL); } /* cleanup_module */ MODULE_AUTHOR("shyamjithe.c.s "); /*macros*/ MODULE_DESCRIPTION("moniter tcp data"); MODULE_LICENSE("GPL");

Данная программа была протестирована на ядре 2.4, так что вы можете откомпилировать её используя:

Gcc -O6 -Wall -c tcpdata.c -I /usr/src/linux-2.4.20-8/include/ this will produce tcpdata.o now insmod tcpdata.o open some tcp applications cat /proc/TCPdata to remove the module use rmmod tcpdata Теперь для того, чтобы понять этот код, я дам некоторые пояснения. Вся программа - это только хитрый путь для использования функциональных указателей. Но необходимо быть внимательным при использовании ваших собственных обработчиков, потому что неправильное размещение функционального указателя может привести к зависанию системы. Как было сказано, это является минимальным путем для взлома TCP. Вы можете сформировать новый уровень над уровнем TCP подобно этому, который будет вмешиваться во все типы заданий, сделанных TCP. Тоже может быть проделано и с UDP.

Заключение

Наиболее важным выводом, получаемым их описанной выше программы, является то, что не всегда необходимо изменять исходный код ядра, когда мы проделываем любую связанную с протоколом модификацию. Это объектно-ориентированная реализация Linux ядра, позволяющая нам манипулировать объектами данных внутри ядра.

Все эти стеки, кроме SNA на нижних уровнях - физическом и канальном, - используют одни и те же хорошо стандартизованные протоколы Ethernet , Token Ring , FDDI и ряд других, которые позволяют задействовать во всех сетях одну и ту же аппаратуру. Зато на верхних уровнях все стеки работают по своим протоколам. Эти протоколы часто не соответствуют рекомендуемому моделью OSI разбиению на уровни. В частности, функции сеансового и представительного уровня, как правило, объединены с прикладным уровнем. Такое несоответствие связано с тем, что модель OSI появилась как результат обобщения уже существующих и реально используемых стеков, а не наоборот.

Стек OSI

Следует четко различать модель OSI и стек OSI . Если модель OSI является концептуальной схемой взаимодействия открытых систем , то стек OSI представляет собой набор вполне конкретных спецификаций протоколов.

В отличие от других стеков протоколов, стек OSI полностью соответствует модели OSI , он включает спецификации протоколов для всех семи уровней взаимодействия, определенных в этой модели. На нижних уровнях стек OSI поддерживает Ethernet, Token Ring , FDDI , протоколы глобальных сетей, X.25 и ISDN , - то есть использует разработанные вне стека протоколы нижних уровней, как и все другие стеки. Протоколы сетевого, транспортного и сеансового уровней стека OSI специфицированы и реализованы различными производителями, но распространены пока мало. Наиболее популярными протоколами стека OSI являются прикладные протоколы. К ним относятся: протокол передачи файлов FTAM, протокол эмуляции терминала VTP, протоколы справочной службы X.500, электронной почты X.400 и ряд других.

Протоколы стека OSI отличаются сложностью и неоднозначностью спецификаций . Эти свойства стали результатом общей политики разработчиков стека, стремившихся учесть в своих протоколах все случаи и все существующие технологии. К этому нужно еще добавить и последствия большого количества политических компромиссов, неизбежных при принятии международных стандартов по такому злободневному вопросу, как построение открытых вычислительных сетей.

Из-за своей сложности протоколы OSI требуют больших затрат вычислительной мощности центрального процессора, что делает их наиболее подходящими для мощных машин, а не для сетей персональных компьютеров.

Стек OSI - независимый от производителей международный стандарт . Его поддерживает правительство США в своей программе GOSIP, в соответствии с которой все компьютерные сети, устанавливаемые в правительственных учреждениях США после 1990 года, должны или непосредственно поддерживать стек OSI , или обеспечивать средства для перехода на этот стек в будущем. Тем не менее, стек OSI более популярен в Европе, чем в США, так как в Европе осталось меньше старых сетей, работающих по собственным протоколам. Большинство организаций пока только планируют переход к стеку OSI , и очень немногие приступили к созданию пилотных проектов. Из тех, что работают в этом направлении, можно назвать Военно-морское ведомство США и сеть NFSNET. Одним из крупнейших производителей, поддерживающих OSI , является компания AT&T, ее сеть Stargroup полностью базируется на этом стеке.

Стек TCP/IP

Стек TCP/IP был разработан по инициативе Министерства обороны США более 20 лет назад для связи экспериментальной сети ARPAnet с другими сетями как набор общих протоколов для разнородной вычислительной среды. Большой вклад в развитие стека TCP/IP , который получил свое название от популярных протоколов IP и TCP, внесли специалисты из университета Беркли, реализовавшие протоколы стека в версии ОС UNIX. Популярность этой операционной системы привела к широкому распространению протоколов TCP, IP и других протоколов стека. Сегодня этот стек используется для связи компьютеров всемирной информационной сети Internet, а также в огромном количестве корпоративных сетей.

Стек TCP/IP на нижнем уровне поддерживает все популярные стандарты физического и канального уровней: для локальных сетей - это Ethernet, Token Ring , FDDI , для глобальных - протоколы работы на аналоговых коммутируемых и выделенных линиях SLIP, PPP, протоколы территориальных сетей X.25 и ISDN .

Основными протоколами стека, давшими ему название, являются протоколы IP и TCP. Эти протоколы в терминологии модели OSI относятся к сетевому и транспортному уровням, соответственно. IP обеспечивает продвижение пакета по составной сети, а TCP гарантирует надежность его доставки.

За долгие годы использования в сетях различных стран и организаций стек TCP/IP вобрал в себя большое количество протоколов прикладного уровня. К ним относятся такие популярные протоколы, как протокол пересылки файлов FTP, протокол эмуляции терминала telnet, почтовый протокол SMTP, используемый в электронной почте сети Internet, гипертекстовые сервисы службы WWW и многие другие.

Сегодня стек TCP/IP представляет собой один из самых распространенных стеков транспортных протоколов вычислительных сетей.

Действительно, только в сети Internet объединено около 10 миллионов компьютеров по всему миру, которые взаимодействуют друг с другом с помощью стека протоколов TCP/IP .

Стремительный рост популярности Internet привел и к изменениям в расстановке сил в мире коммуникационных протоколов - протоколы TCP/IP , на которых построен Internet, стали быстро теснить бесспорного лидера прошлых лет - стек IPX/SPX компании Novell. Сегодня в мире общее количество компьютеров, на которых установлен стек TCP/IP , превысило количество компьютеров, на которых работает стек IPX/SPX , и это говорит об изменении отношения администраторов локальных сетей к протоколам, используемым на настольных компьютерах, так как именно на них раньше почти везде работали протоколы компании Novell, необходимые для доступа к файловым серверам NetWare . Процесс продвижения стека TCP/IP на лидирующие позиции в любых типах сетей продолжается, и сейчас в комплекте поставки любой промышленной операционной системы обязательно имеется программная реализация этого стека.

Хотя протоколы TCP/IP неразрывно связаны с Internet, и каждый из многомиллионной армады компьютеров Internet работает на основе этого стека, существует большое количество локальных, корпоративных и территориальных сетей, непосредственно не являющихся частями Internet, в которых также используются протоколы TCP/IP . Чтобы отличать эти сети от Internet, их называют сетями TCP/IP или просто IP-сетями.

Поскольку стек TCP/IP изначально создавался для глобальной сети Internet, он имеет много особенностей, которые обеспечивают ему преимущество перед другими протоколами, когда речь заходит о построении сетей, включающих глобальные связи. В частности, очень полезным свойством, благодаря которому этот протокол может применяться в больших сетях, является его способность фрагментировать пакеты. Действительно, сложная составная сеть часто состоит из сетей, построенных на совершенно разных принципах. В каждой из этих сетей может быть установлена собственная величина максимальной длины единицы передаваемых данных (кадра). В таком случае при переходе из одной сети, имеющей большую максимальную длину, в другую, с меньшей максимальной длиной, может возникнуть необходимость разделения передаваемого кадра на несколько частей. Протокол IP стека TCP/IP эффективно решает эту задачу.

Другой особенностью технологии TCP/IP является гибкая система адресации, позволяющая более просто по сравнению с другими протоколами аналогичного назначения включать в интерсеть (объединенную или составную сеть) сети других технологий. Это свойство также способствует применению стека TCP/IP для построения больших гетерогенных сетей.

В стеке TCP/IP очень экономно используются возможности широковещательных рассылок. Это свойство просто необходимо при работе на медленных каналах связи, характерных для территориальных сетей.

Однако платой за преимущества здесь оказываются высокие требования к ресурсам и сложность администрирования IP-сетей. Для реализации мощных функциональных возможностей протоколов стека TCP/IP требуются большие вычислительные затраты. Гибкая система адресации и отказ от широковещательных рассылок приводят к наличию в IP-сети различных централизованных служб типа DNS, DHCP и т. п. Каждая из этих служб упрощает администрирование сети и конфигурирование оборудования, но в то же время сама требует пристального внимания со стороны администраторов.

Можно приводить и другие доводы за и против, однако факт остается фактом - сегодня TCP/IP самый популярный стек протоколов , широко используемый как в глобальных, так и в локальных сетях.

Стек IPX/SPX

Этот стек является оригинальным стеком протоколов фирмы Novell, разработанным для сетевой операционной системы NetWare еще в начале 80-х годов. Протоколы сетевого и сеансового уровней Internetwork Packet Exchange ( IPX и Sequenced Packet Exchange, SPX ), которые дали название стеку, являются прямой адаптацией протоколов XNS фирмы Xerox, распространенных в гораздо меньшей степени, чем стек IPX/SPX .

Популярность стека IPX/SPX непосредственно связана с операционной системой Novell NetWare , которая долгое время сохраняла мировое лидерство по числу установленных систем, хотя в последнее время ее популярность намного снизилась, и по темпам роста она заметно отстает от Microsoft Windows NT.

Многие особенности стека IPX/SPX обусловлены ориентацией ранних версий ОС NetWare (до версии 4.0) на работу в локальных сетях небольших размеров, состоящих из персональных компьютеров со скромными ресурсами. Понятно, что для таких компьютеров компании Novell нужны были протоколы, на реализацию которых требовалось бы минимальное количество оперативной памяти (ограниченной в IBM-совместимых компьютерах под управлением MS-DOS объемом 640 Кбайт) и которые быстро работали бы на процессорах небольшой вычислительной мощности. В результате протоколы стека IPX/SPX до недавнего времени хорошо работали в локальных сетях и не очень - в больших корпоративных сетях, так как они слишком перегружали медленные глобальные связи широковещательными пакетами, которые интенсивно используются несколькими протоколами этого стека (например, для установления связи между клиентами и серверами). Это обстоятельство, а также тот факт, что стек IPX/SPX является собственностью фирмы Novell, и на его реализацию нужно получать лицензию (то есть открытые спецификации не поддерживались), долгое время ограничивали его поле деятельности только сетями NetWare . Однако с момента выпуска версии

Если заметили ошибку, выделите фрагмент текста и нажмите Ctrl+Enter
ПОДЕЛИТЬСЯ: