Windows. Вирусы. Ноутбуки. Интернет. Office. Утилиты. Драйверы

Для того чтобы составить схему гальванического элемента, необходимо понять принцип его действий, особенности строения.

Потребители редко обращают внимание на аккумуляторы и батарейки, при этом именно эти источники тока являются самыми востребованными.

Химические источники тока

Что собой представляет гальванический элемент? Схема его основывается на электролите. В устройство входит небольшой контейнер, где располагается электролит, адсорбируемый материалом сепаратора. Кроме того, схема двух гальванических элементов предполагает наличие Как называется такой гальванический элемент? Схема, связывающая между собой два металла, предполагает наличие окислительно-восстановительной реакции.

Простейший гальванический элемент

Он подразумевает наличие двух пластин либо стержней, выполненных из разных металлов, которые погружены в раствор сильного электролита. В процессе работы данного гальванического элемента, на аноде осуществляется процесс окисления, связанный с отдачей электронов.

На катоде - восстановление, сопровождающееся принятием отрицательных частиц. Происходит передача электронов по внешней цепи к окислителю от восстановителя.

Пример гальванического элемента

Для того чтобы составить электронные схемы гальванических элементов, необходимо знать величину их стандартного электродного потенциала. Проанализируем вариант медно-цинкового гальванического элемента, функционирующего на основе энергии, выделяющейся при взаимодействии сульфата меди с цинком.

Этот гальванический элемент, схема которого будет приведена ниже, называют элементом Якоби-Даниэля. Он включает в себя которая погружена в раствор медного купороса (медный электрод), а также он состоит из цинковой пластины, находящейся в растворе его сульфата (цинковый электрод). Растворы соприкасаются между собой, но для того, чтобы не допускать их смешивания, в элементе используется перегородка, выполненная из пористого материала.

Принцип действия

Как функционирует гальванический элемент, схема которого имеет вид Zn ½ ZnSO4 ½½ CuSO4 ½ Cu? Во время его работы, когда замкнута электрическая цепь, происходит процесс окисления металлического цинка.

На его поверхности соприкосновения с раствором соли наблюдается превращение атомов в катионы Zn2+. Процесс сопровождается выделением «свободных» электронов, которые передвигаются по внешней цепи.

Реакцию, протекающую на цинковом электроде, можно представить в следующем виде:

Восстановление катионов металла осуществляется на медном электроде. Отрицательные частицы, которые попадают сюда с цинкового электрода, объединяются с катионами меди, осаждая их в виде металла. Данный процесс имеет следующий вид:

Если сложить две реакции, рассмотренные выше, получается суммарное уравнение, описывающее работы цинково-медного гальванического элемента.

В качестве анода выступает цинковый электрод, катодом служит медь. Современные гальванические элементы и аккумуляторы предполагают применение одного раствора электролита, что расширяет сферы их применения, делает их эксплуатацию более комфортной и удобной.

Разновидности гальванических элементов

Самыми распространенными считают угольно-цинковые элементы. В них применяется пассивный угольный коллектор тока, контактирующий с анодом, в качестве которого выступает оксид марганца (4). Электролитом является хлорид аммония, применяемый в пастообразном виде.

Он не растекается, поэтому сам гальванический элемент называют сухим. Его особенностью является возможность «восстанавливаться» на протяжении работы, что позитивно отражается на продолжительности их эксплуатационного периода. Такие гальванические элементы имеют невысокую стоимость, но невысокую мощность. При понижении температуры они снижают свою эффективность, а при ее повышении происходит постепенное высыхание электролита.

Щелочные элементы предполагают использование раствора щелочи, поэтому имеют довольно много областей применения.

В литиевых элементах в качестве анода выступает активный металл, что позитивно отражается на сроке эксплуатации. Литий имеет отрицательный поэтому при небольших габаритах подобные элементы имеют максимальное номинальное напряжение. Среди недостатков подобных систем можно выделить высокую цену. Вскрытие литиевых источников тока является взрывоопасным.

Заключение

Принцип работы любого гальванического элемента основывается на окислительно-восстановительных процессах, протекающих на катоде и аноде. В зависимости от используемого металла, выбранного раствора электролита, меняется срок службы элемента, а также величина номинального напряжения. В настоящее время востребованы литиевые, кадмиевые гальванические элементы, имеющие достаточно продолжительный срок своей службы.

Гальванический элемент - это химический источник тока, в котором энергия, выделяющаяся при протекании на электродах окислительно-восстановительной реакции, непосредственно преобразуется в электрическую энергию.

Рис. 9.2. Схема гальванического элемента Даниэля - Якоби

Здесь I - стакан, содержащий раствор ZnSO 4 в воде с погруженной в него цинковой пластинкой; II - стакан, содержащий раствор CuSO 4 в воде с погруженной в него медной пластинкой; III - солевой мостик (электролитический ключ), который обеспечивает перемещение катионов и анионов между растворами; IV - вольтметр (нужен для измерения ЭДС, но в состав гальванического элемента не входит).

Стандартный электродный потенциал цинкового электрода . Стандартный электродный потенциал медного электрода . Так как , то атомы цинка будут окисляться:

Электрод, на котором идет реакция восстановления или которыйпринимает катионы из электролита , называется катодом.

Через электролитический ключ происходит движение ионов в растворе: анионов SO 4 2- к аноду, катионов Zn 2+ к катоду. Движение ионов в растворе замыкает электрическую цепь гальванического элемента.

Реакции (а) и (б) называются электродными реакциями.

Складывая уравнения процессов, протекающих на электродах, получаем суммарное уравнение окислительно-восстановительной реакции, протекающей в гальваническом элементе:

В общем случае, суммарное уравнение окислительно-восстановительной реакции, протекающей в произвольном гальваническом элементе, можно представить в виде:

Схема гальванического элемента Даниэля - Якоби имеет вид:

Zn | ZnSO 4 || CuSO 4 | Cu

Максимальная разность потенциалов электродов, которая может быть получена при работе гальванического элемента, называется электродвижущей силой (ЭДС) элемента Е . Она вычисляется по формуле;

где n - число электронов в элементарном окислительно-восстановительном акте, F - число Фарадея.

Величина изменения изобарно-изотермического потенциала токообразующей реакции при стандартных условиях?G 0 связана с константой равновесия этой реакции К равн соотношением

(9.6)

Гальванические элементы являются первичными (однократно используемыми) химическими источниками тока (ХИТ). Вторичными (многократно используемыми) ХИТ являются аккумуляторы. Процессы, протекающие при разряде и заряде аккумуляторов, взаимнообратны.

Гальванические элементы, у которых электроды выполнены из одного и того же металла и опущены в растворы своих солей разной концентрации, называются концентрационными . Функцию анода в таких элементах выполняет металл, опущенный в раствор соли с меньшей концентрацией, например:

Пример 1. Составьте схему гальванического элемента, в основе которого лежит реакция: Mg + ZnSO 4 = MgSO 4 + Zn. Что является катодом и анодом в этом элементе? Напишите уравнения процессов, протекающих на этих электродах. Рассчитайте ЭДС элемента при стандартных условиях. Вычислите константу равновесия для токообразующей реакции.

Маломощные источники электрической энергии

Для питания переносной электро- и радиоаппаратуры применяют гальванические элементы и аккумуляторы.

Гальванические элементы - это источники одноразового действия, аккумуляторы - источники многоразового действия.

Простейший гальванические элемент

Простейший элемент может быть изготовлен из двух полосок: медной и цинковой, погруженных в воду, слегка подкисленную серной кислотой. Если цинк достаточно чист, чтобы быть свободным от местных реакций, никаких заметных изменений не произойдет до тех пор, пока медь и цинк не будут соединены проводом.

Однако полоски имеют разные потенциалы одна по отношению к другой, и когда они будут соединены проводом, в нем появится . По мере этого действия цинковая полоска будет постепенно растворяться, а близ медного электрода будут образовываться пузырьки газа, собирающиеся на его поверхности. Этот газ - водород, образующийся из электролита. Электрический ток идет от медной полоски по проводу к цинковой полоске, а от нее через электролит обратно к меди.

Постепенно серная кислота электролита замещается сульфатом цинка, образующимся из растворенной части цинкового электрода. Благодаря этому напряжение элемента уменьшается. Однако еще более сильное падение напряжения вызывается образованием газовых пузырьков на меди. Оба эти действия производят «поляризацию». Подобные элементы не имеют почти никакого практического значения.

Важные параметры гальванических элементов

Величина напряжения, даваемого гальваническими элементами, зависит только от их типа и устройства, т. е. от материала электродов и химического состава электролита, но не зависит от формы и размеров элементов.

Сила тока, которую может давать гальванический элемент, ограничивается его внутренним сопротивлением.

Очень важной характеристикой гальванического элемента является . Под электрической емкостью подразумевается то количество электричества, которое гальванический или аккумуляторный элемент способен отдать в течение всего времени своей работы, т. е. до наступления окончательного разряда.

Отданная элементом емкость определяется умножением силы разрядного тока, выраженной в амперах, на время в часах, в течение которого разряжался элемент вплоть до наступления полного разряда. Поэтому электрическая емкость выражается всегда в ампер-часах (А х ч).

По величине емкости элемента можно также заранее определить, сколько примерно часов он будет работать до наступления полного разряда. Для этого нужно емкость разделить на допустимую для этого элемента силу разрядного тока.

Однако электрическая емкость не является величиной строго постоянной. Она изменяется в довольно больших пределах в зависимости от условий (режима) работы элемента и конечною разрядного напряжения.

Если элемент разряжать предельной силой тока и притом без перерывов, то он отдаст значительно меньшую емкость. Наоборот, при разряде того же элемента током меньшей силы и с частыми и сравнительно продолжительными перерывами элемент отдаст полную емкость.

Что же касается влияния на емкость элемента конечного разрядного напряжения, то нужно иметь в виду, что в процессе разряда гальванического элемента его рабочее напряжение не остается на одном уровне, а постепенно понижается.

Распространенные виды гальванических элементов

Наиболее распространены гальванические элементы марганцево-цинковой, марганцево-воздушной, воздушно-цинковой и ртутно-цинковой систем с солевым и щелочным электролитами. Сухие марганцево-цинковые элементы с солевым электролитом имеют начальное напряжение от 1,4 до 1,55 В, продолжительность работы при температуре окружающей среды от -20 до -60 о С от 7 ч до 340 ч.

Сухие марганцево-цинковые и воздушно-цинковые элементы со щелочным электролитом имеют напряжение от 0,75 до 0,9 В и продолжительность работы от 6 ч до 45 ч.

Сухие ртутно-цинковые элементы имеют начальное напряжение от 1,22 до 1,25 В и продолжительность работы от 24 ч до 55 ч.

Наибольший гарантийный срок хранения, достигающий 30 месяцев, имеют сухие ртутно-цинковые элементы.

Это вторичные гальванические элементы. В отличие от гальванических элементов в аккумуляторе же сразу после сборки никакие химические процессы не возникают.

Чтобы в аккумуляторе начались химические реакции, связанные с движением электрических зарядов, нужно соответствующим образом изменить химический состав его электродов (а частью и электролита). Это изменение химического состава электродов происходит под действием пропускаемого через аккумулятор электрического тока.

Поэтому, чтобы аккумулятор мог давать электрический ток, его предварительно нужно «зарядить» постоянным электрическим током от какого-нибудь постороннего источника тока.

От обычных гальванических элементов аккумуляторы выгодно отличаются также тем, что после разряда они опять могут быть заряжены. При хорошем уходе за ними и при нормальных условиях эксплуатации аккумуляторы выдерживают до нескольких тысяч зарядов и разрядок.
Устройство аккумулятора

В настоящее время наиболее часто на практике применяют свинцовые и кадмиево-никелевые аккумуляторы. У первых электролитом служит раствор серной кислоты, а у вторых - раствор щелочей в воде. Свинцовые аккумуляторы называют также кислотными, а кадмиево-никелевые - щелочными.

Принцип работы аккумуляторов основан на поляризации электродов . Простейший кислотный аккумулятор устроен следующим образом: это две свинцовые пластины, опущенные в электролит. В результате химической реакции замещения пластины покрываются слабым налетом сернокислого свинца PbSO4, как это следует из формулы Pb + H 2 SO 4 = PbSO 4 + Н 2 .

Устройство кислотного аккумулятора

Такое состояние пластин соответствует разряженному аккумулятору. Если теперь аккумулятор включить на заряд, т. е. подсоединить его к генератору постоянного тока, то в нем вследствие электролиза начнется поляризация пластин. В результате заряда аккумулятора его пластины поляризуются, т. е. изменяют вещество своей поверхности, и из однородных (PbSO 4) превращаются в разнородные (Pb и Рb О 2 ).

Аккумулятор становится источником тока, причем положительным электродом у него служит пластина, покрытая двуокисью свинца, а отрицательным - чистая свинцовая пластина.

К концу заряда концентрация электролита повышается вследствие появления в нем дополнительных молекул серной кислоты.

В этом одна из особенностей свинцового аккумулятора: его электролит не остается нейтральным и сам участвует в химических реакциях при работе аккумулятора.

К концу разряда обе пластины аккумулятора опять покрываются сернокислым свинцом, в результате чего аккумулятор перестает быть источником тока. До такого состояния аккумулятор никогда не доводят. Вследствие образования сернокислого свинца на пластинах, концентрация электролита в конце разряда понижается. Если аккумулятор поставить на заряд, то вновь можно вызвать поляризацию, чтобы опять поставить его на разряд и т. д.

Как зарядить аккумулятор

Существует несколько способов заряда аккумуляторов. Наиболее простой - нормальный заряд аккумулятора, который происходит следующим образом. Вначале на протяжении 5 - 6 ч заряд ведут двойным нормальным током, пока напряжение на каждой аккумуляторной банке не достигнет 2,4 В.

Нормальный зарядный ток определяют по формуле I зар = Q/16

Где Q - номинальная емкость аккумулятора, Ач.

После этого зарядный ток уменьшают до нормального значения и продолжают заряд и течение 15 - 18 ч, до появления признаков конца заряда.

Современные аккумуляторы

Кадмиево-никелевые, или щелочные аккумуляторы, появились значительно позже свинцовых и по сравнению с ними представляют собой более совершенные химические источники тока. Главное преимущество щелочных аккумуляторов перед свинцовыми заключается в химической нейтральности их электролита по отношению к активным массам пластин. Благодаря этому саморазряд у щелочных аккумуляторов получается значительно меньше, чем у свинцовых. Принцип действия щелочных аккумуляторов также основан на поляризации электродов при электролизе.

Для питания радиоаппаратуры выпускают герметичные кадмиево-никелевые аккумуляторы, которые работоспособны при температурах от -30 до +50 о С и выдерживают 400 - 600 циклов заряд-разряд. Эти аккумуляторы выполняют в форме компактных параллелепипедов и дисков с массой от нескольких граммов до килограммов.

Выпускают никель-водородные аккумуляторы для энергоснабжения автономных объектов. Удельная энергия никель-водородного аккумулятора составляет 50 - 60 Вт ч кг -1 .

Гальванический элемент – прибор, который преобразовывает химическую энергию в электрическую. Одним из таких элементов является элемент Даниэля – Якоби. Этот элемент состоит из двух электродов: цинкового и медного, – погруженных в соответствующие сульфатные растворы, между которыми пористая перегородка:

При замыкании внешней цепи электроны переходят от Zn к Cu, происходит диффузия цинка в медь:

Образуем электрохимическую схему:

Анод – отрицательный электрод (слева). Катод – положительный электрод.

Для определения ЭДС этого элемента нужно сравнить стандартные электродные потенциалы обоих электродов. При записи электродных реакций принято, что окисленная форма находится в левой части, а восстановленная – в правой части уравнения.



где E 0 – электродвижущая сила (ЭДС) гальванического элемента, когда все реагенты в стандартном состоянии.

ЭДС элемента вычисляется вычитанием из потенциала катода потенциала анода.

ЭДС элемента равна +0,34 – (–0,76) = 1,1 В; чем больше электродные потенциалы отличаются друг от друга, тем больше ЭДС. Если погрузить металл в раствор соли большей концентрации, то потенциал нестандартный. Значит, на величину электродного потенциала влияет концентрация и температура. Такая зависимость выражается уравнением В. Нернста .

где п – число ионов;

R – универсальная газовая постоянная;

Т – температура;

С – концентрация активных ионов в растворе;

F – число Фарадея = 96500 В.

ХИТы – устройства, которые применяют для непосредственного преобразования энергии химической реакции в электрическую. ХИТы применяются в различных областях техники. В средствах связи: радио, телефон, телеграф; в электроизмерительной аппаратуре; они служат источниками электропитания для автомобилей, самолетов, тракторов; применяются для приведения в действие стартеров и др.

Недостатки ХИТ:

1) стоимость веществ, необходимых для работы: Pb, Cd, – высока;

2) отношение количества энергии, которую может отдать элемент, к его массе, мало.

Преимущества ХИТ:

1) ХИТы делятся на две основные группы: обратимые (аккумуляторы), необратимые (гальванические элементы) . Аккумуляторы можно использовать многократно, так как их работоспособность может быть восстановлена при пропускании тока в обратном направлении от внешнего источника, а в гальванических элементах допускают лишь однократное использование, поскольку один из электродов (Zn в элементе Даниэля – Якоби) необратимо расходуется;

2) применяются электролиты, поглощенные пористыми материалами, они имеют большее внутреннее сопротивление;

3) создание топливных элементов, при работе которых расходовались бы дешевые вещества с малой плотностью (природный газ, водород);

4) удобство в работе, надежность, высокие и стабильные напряжения.

Рассмотрим процесс технологии на основе свинцово-кислотного аккумулятора с намазными электродами.

Общая схема: (–) активное вещество | электролит | активное вещество (+).

Активным веществом отрицательного электрода служит восстановитель , отдающий электроны. При разряде отрицательный электрод является анодом, т. е. электродом, на котором протекают окислительные процессы. Активное вещество положительного электрода – окислитель . Активные вещества – окислитель и восстановитель – участвуют в электрохимической реакции.

Электрохимическая схема свинцово-кислотного аккумулятора

Активными веществами свинцового аккумулятора являются: губчатый свинец и PbO 2 . Создание активных масс в электродах заключается в следующем: на электропроводящий каркас конструкции наносят пасту или смесь оксидов Pb; при последующем формировании пластин оксиды Pb превращаются в активные вещества. Формирование – перевод незаряженной массы в заряженную. Такого рода пластины подразделяются в зависимости от типа каркаса на намазные и решетчатые. Большинство аккумуляторов собирают из намазных пластин. При их изготовлении пасту из оксидов свинца вмазывают в ячейки профилированных решеток толщиной 1 – 7 мм, отлитых из Pb – Sb сплава. После затвердевания паста удерживается на решетке, гарантия такого аккумулятора – 2 – 3 года. При выборе материалов токоотводов положительных электродов аккумуляторов важно обеспечить их практическую пассивность (при сохранении электрической проводимости) в условиях заряда (до весьма высоких потенциалов при анодной поляризации). Для этой цели в растворах H 2 SO 4 применяют Pb или его сплавы. Корпус и крышка ХИТ могут быть изготовлены из стали, либо из различных диэлектриков, но в свинцово-кислотных аккумуляторах корпус выполняют из эбонита, полипропилена, стекла. Электролит в свинцово-кислотном аккумуляторе может участвовать в суммарной токообразующей реакции. Для токоведущих отводов отрицательного электрода применяют Cu, Ti, Al.

3. Регенерация и утилизация ХИТов

Срок службы гальванических элементов кончается (разряд ХИТ) после полного или частичного использования активных материалов, работоспособность которых после разряда может быть восстановлена путем заряда, то есть пропусканием тока в направлении, обратном направлению тока при разряде: такие гальванические элементы называются аккумуляторами . Отрицательный электрод, который при разряде аккумулятора был анодом, при заряде становится катодом. Условиями лучшего использования активных материалов являются низкие плотности тока, высокие температуры до нормы. Обычно причиной нарушения работы ХИТов является пассивация электродов – резкое уменьшение скорости электрохимического процесса при разряде, вызванное изменением состояния поверхности электродов при разряде из-за образования оксидных слоев или солевых пленок. Способ борьбы с пассивацией – уменьшение истинных плотностей тока разряда путем применения электродов с развитыми поверхностями. Производство ХИТ отличается применением разнообразных токсичных веществ (сильных окислителей, соединений Pb, Hg, Zn, Cd, Ni, применяемых в мелкодисперсном состоянии; кислот, щелочей, органических растворителей). Для обеспечения нормальных условий труда предусмотрена автоматизация производственных процессов, рациональные системы вентиляции, включающие применение местных отсосов от аппаратов с токсичными выделениями, герметизация оборудования, замена сухих способов переработки пылящих материалов мокрыми, очистка загрязненного воздуха и газов от аэрозолей, очистка промышленных сточных вод. Массовое использование ХИТ в народном хозяйстве связано с проблемами экологии. Если свинец из аккумуляторов в основном может быть возвращен потребителями на заводы по его переработке, то утилизация небольших бытовых первичных ХИТ экономически нецелесообразна.

Каждая батарея Hg – Zn обеспечивает работу слухового аппарата в течение 5 – 7 дней.

Проводится разработка электромобилей с использованием ХИТ вместо двигателей внутреннего сгорания, которые отравляют атмосферу городов выхлопными газами. По степени отрицательного воздействия на окружающую среду гальваническое производство стоит на первом месте. Причина крайне негативного воздействия гальванического производства заключается в том, что на подавляющем большинстве предприятий в технологических процессах нанесения покрытий полезно расходуется только 10 – 30% солей тяжелых металлов, остальная же часть при неудовлетворительной работе попадает в среду. Выход – максимально сократить потери солей цветных металлов, то есть уменьшить вынос деталями электролитов из гальванических ванн. Это приведет к уменьшению концентраций и объемов сточных вод и создаст тем самым необходимые условия для ведения малоотходной (МОТ) и безотходной (БОТ) технологий нанесения гальванических покрытий. Надо первоначально правильно подобрать электролит. Основополагающий принцип МОТ и БОТ – уменьшать расход химикатов на входе и меньше поставлять ядов на выходе процесса.

Самодельный гальванический элемент для автономного питания

Элемент Вольта

Для питания и зарядки портативной электроники в тех местах, где нет электросети можно успешно использовать на ряду с другими источниками электроэнергии и простейшие химические источники тока, гальванические элементы.

Их использование возможно на дачах при долгосрочном проживании при отсутствии электросети,а также в отдалённых деревнях где или нет совсем электроэнергии, или постоянные перебои с электроснабжением. В советской России химические источники тока или гальванические элементы получили широкое распространение в радиолюбительской технике в середине прошлого столетия, так как эти источники просты в изготовлении и изготовляются из легкодоступных материалов.

Сейчас, когда портативная электроника стала очень экономична в плане электропотребления, её питание от самодельных химических источников тока может оказаться очень эффективным, так как такие источники тока с успехом применяли ещё на заре развития радиотехники. Тогда техника потребляла в разы больше электроэнергии чем современная аппаратура,а сейчас с развитием энергосберегающей светотехники. Например, светодиодной, на освещение тратится в 4-5 раз меньше электроэнергии, чем от потребления обычной лампочки. Также современные мобильные телефоны, КПК и другие гаджеты потребляют ни чуть не больше, а даже меньше, чем радиоаппаратура прошлых десятилетий.

Внимание!

В статье имеются орфографические и пунктуационные ошибки, т.к. материал взят с сайта http://soliaris2010.narod2.ru, и редактирование текста практически осталось как у оригинала. Не судите строго, пожалуйста...

ПРОСТЕЙШИЙ ГАЛЬВАНИЧЕСКИЙ ЭЛЕМЕНТ, ЭЛЕМЕНТ ВОЛЬТА

Вольтов столб Первый химический источник тока был изобретён итальянским учёным Алессандро Вольта в 1800 году. Это был элемент Вольта — сосуд с солёной водой с опущенными в него цинковой и медной пластинками, соединенными проволокой. Затем учёный собрал батарею из этих элементов, которая впоследствии была названа Вольтовым столбом. Это изобретение впоследствии использовали другие учёные в своих исследованиях. Так, например, в 1802 году русский академик В. В. Петров сконструировал Вольтов столб из 2100 элементов для получения электрической дуги.

В 1836 году английский химик Джон Дэниель усовершенствовал элемент Вольта, поместив цинковый и медный электроды в раствор серной кислоты. Эта конструкция стала называться «элементом Даниэля».В 1859 году французский физик Гастон Планте изобрёл свинцово-кислотный аккумулятор. Этот тип элемента и по сей день используется в автомобильных аккумуляторах.В 1865 году французский химик Ж.Лекланше предложил свой гальванический элемент (элемент Лекланше), состоявший из цинкового стаканчика, заполненного водным раствором хлористого аммония или другой хлористой соли, в который был помещён агломерат из оксида марганца (IV) MnO2 с угольным токоотводом.

Модификация этой конструкции используется до сих пор в солевых батарейках для различных бытовых устройств.В 1890 году в Нью-Йорке Конрад Губерт, иммигрант из России, создаёт первый карманный электрический фонарик. А уже в 1896 году компания National Carbon приступает к массовому производству первых в мире сухих элементов Лекланше «Columbia». Самый долгоживущий гальванический элемент - серно-цинковая батарея, изготовленная в Лондоне в 1840 г. Подключенный к ней звонок работает и по сей день.

Простейший медно-цинковый элемент состоит из двух электродов-пластин, погруженных в раствор электролита, при погружении в электролит между металлами возникает разница потенциалов. При погружении в раствор повареной соли медной пластины и цинковой возникает разница потенциалов примерно в 1 вольт, и один элемент независимо от размеров имеет напряжение в один вольт, а мощность такого элемента зависит от его размеров и площади пластин погруженных в электролит. Для получения более высокого напряжение эти элементы, как и зоводские батарейки соеденяют последовательно для получения нужного напряжения.

ХАРАКТЕРИСТИКИ МЕДНОЦИНКОВОГО ЭЛЕМЕНТА

Медно-цинковые источники тока. Производство этих химических источников тока началось еще в 1889 г. В настоящее время они выпускаются в небольших масштабах в виде элементов емкостью от 250 до 1000 А·ч. Гладкие цинковые пластины и пластины из смеси оксида меди, меди и связующего помещают в стеклянный или металлический сосуд с 20%-ным раствором NaОН. Элементы имеют напряжение 0,6-0,7 В и удельную энергию 25-30 Вт·ч/кг. К их достоинствам относится постоянство разрядного напряжения, очень малый саморазряд, безотказность в работе и невысокая цена. Применялись в системах сигнализации и связи на железных дорогах.

В реальных условиях энергоёмкость может сильно отличатся и зависит она от площади пластит, чистоты металлов и плотности электролита.Элемент собранный в литровой банке,с пластинами максимальной площади, двадцати процентным раствором соли в виде электролита, выдаёт напряжение от 0,6-1,1 вольта,10-20а/ч,но в таких элементах очень маленький разрядный ток маленький,и ток замыкания может быть около 100-150мА/ч.,а чем меньше подсоединенный источник потребляет, тем больше медно-цинковый элемент может вырабатывать электроэнергии. Элемент собранный в литровой банке при токе разряда 50 мА/ч проработает от 200часов до 400часов и более и более,но со временем пластины окисляются и напряжение падает и в итоге элемент перестаёт работать. Для восстановления элемента надо заменить электролит и очистить пластины от окисления и элемент снова будет работать.

Процесс окисления зависит от разрядного тока чем он выше,тем быстрее элемент выйдет из строя,но в среднем элемент в литровой банке до чистки и перезарядки,при разрядном токе 50 мА/ч проработает около 3-4 месяца,а при разрядном токе в 2-5 мА/ч его хватит на год и более.Простого литрового элемента не хватит для питания даже простого миниатюрного радиоприемника,и для того чтобы получить нужные характеристики нужно собрать блок из нескольких элементов.

Сейчас в основном вся портативная электроника питается напряжением в 3,6-4,5 вольта,и для того чтобы получить такие числа нужно соединить последовательно 4-5 таких элементов,если соединить 5 литровых элементов,то получится примерно 3,5-4,8 вольта, и ёмкость возрастает до 40-50 А/ч,а ток разряда может достигать 400-600 мА/ч,следовательно такой источник легко справится с питанием маленького радиоприёмника или светодиодного фонарика, а также с зарядкой миниатюрных аккумуляторов телефонов в течении 10-30 часов. Но для питания мощных светодиодных фонарей и питания современных телефонов и КПК такого источники будет маловато.

ДЛЯ СТАБИЛЬНОГО ДОЛГОСРОЧНОГО АВТОНОМНОГО ПИТАНИЯ ПОРТАТИВНОЙ ЭЛЕКТРОНИКИ

понадобится что-то побольше, например, элемент ёмкостью как на рисунке, объем 40-50 литров,для стабильного питания портативных комнатных светодиодных светильников и другой техники. Для изготовления такого химического источника электроэнергии на понадобятся: 5 медных пластин размерами 20х40, и 5 таких же цинковых, далее на каждую пластинку нужно припаять или запрессовать путём загибания уголка пластины вставить проводок и заплющить молотком.

После надо пластины через электронопроводящие прокладки (деревянный брусочек или пластмассовая трубка) закрепить между собой, потом опускаем их в ёмкости с электролитом, это или раствор поваренной соли или раствор нашатыря или раствор серной кислоты (авто электролит), после соединяем получившиеся батарейки последовательно, то есть медная пластина одного элемента через проводок соединяется с цинковой пластиной другого элемента. В итоге, с одной стороны получившегося блока остаётся пластина медная с проводком (+), а с другой цинковая (-). Чем больше площадь пластин и чем лучше электролит, тем выше эффективность такого источника тока.

САМОДЕЛЬНЫЙ МЕДНО-КУПОРОСНЫЙ ЭЛЕМЕНТ

В этой самодельной конструкции из-за недоступности чистого цинка,применён алюминиевый электрод,но э.д.с. алюминия ниже чем у цинка,составляет 0,5 В, то есть одна банка даёт всего 0,5 вольт, из-за этого прибор состоит не из 4-х банок для напражения в 3,5-4 вольты,а из 6-ти,чтобы получить как минимум 3,6 вольт.

При испытании данного прибора не было никаких измерительных приборов, но как видно из фото,прибор свободно обеспечивает свечение 12-ти светодиодов-ток потребления150-200мА, и заряжает мобильный телефон-ток потребления около 400мА.
При испытании элемент зарядил батарею телефона ёмкостью 750мА за 2,40 минут.

Примерные технические характеристики батареи элементов, состоящей из 6-ти банок, емкостью 0,33л.: 3,7 Вольт, ток замыкания около 500мА, ёмкость 25-30А/ч.

В ходе испытания батарея элементов стабильно проработала на одной столовой ложке купороса около 100 часов при токе разряда примерно 200мА/ч,сейчас прибор так-же работает, но сила тока значительно меньше и составляет около 80мА/ч,купарос практически истрачен,таким образом если посчитать,то можно определить,сколько времени вообще элементы проработают на определённом количестве купороса, питая определенные приборы.

ПОРЯДОК ИЗГОТОВЛЕНИЯ

В ЭТОЙ КОНСТРУКЦИИ В КАЧЕСТВЕ АЛЮМИНИЕВОГО ЭЛЕКТРОДА ИСПОЛЬЗОВАЛИСЬ АЛЮМИНИЕВЫЕ БАНКИ (ПИВНЫЕ) И ДРУГИЕ ИЗДЕЛИЯ ИЗ АЛЮМИНИЯ.

ЕСЛИ БУДУТ ИСПОЛЬЗОВАТЬСЯ АЛЮМИНИЕВЫЕ БАНКИ, ТО ИХ НУЖНО ТЩАТЕЛЬНО ЗАЧИСТИТЬ ОТ ЗАЩИТНОГО ВНУТРЕННЕГО СЛОЯ И ВНЕШНИХ НАДПИСЕЙ, ТАК КАК ОНИ НЕ ПРОПУСКАЮТ ТОК.

Сначала внутренняя поверхность банки обмазывается вазелином или салом на расстоянии 3-4 сантиметра от верхнего края банки,это делается для того чтобы предупредить выползание кристаллов солей из сосуда элемента.

Далее в цилиндре надо с одной стороны сделать двойные прорези на глубину 4-5 мм., и получившиеся скобки загнуть наружу,для того что-бы цилиндр висел на них, на горлышке банки, не доходя до дна банки на 5 см.,после изготовления припаять к нему медный провод,это и будет (+).

Далее изготавливается диафрагма,диафрагма изготавливается из картона,делается цилиндр из картона по длине банки,или короче банки на 5 см.,а потом к нему пришивается нитками картонное дно,так что-бы не оставалось щелей,а места сшивки пропитываются горячим парафином чтобы герметизировать дно от вытекания жидкости.

Далее на цилиндр плотно наматывают несколько слоёв пергамента или газетной бумаги,предварительно вымоченного в солёном растворе,чтобы не оставалось воздушных прослоек,а после получившейся "стакан" плотно обшивается обёрнутой в несколько слоёв тканью,для механической прочности.

Потом на верх диафрагмы наклеивают или пришивают кольцо,чтобы стакан не проваливался,и места крепления обмазывают горячим парафином,в кольце делают отверстие, через которое в банку наливается вода и вставляется мешалка для помешивания купороса.

Потом в диафрагму надо налить раствор поваренной соли и оставить на несколько часов,правильно собранная диафрагма не должна подтекать,а её поверхность должна быть всего-лишь влажной.далее по внутреннему диаметру диафрагмы изготавливается из листа цинка цилиндр к нему припаивается медный провод который будет служить (-),цинковый цилиндр должен свободно входить в диафрагму,но при этом быть как можно ближе к её стенкам,то есть ближе к медному цилиндру,чтобы уменьшить внутренне сопротивление,и соответственно повысить эффективность.

СБОРКА ЭЛЕМЕНТА.

В чистую банку,если 0,5л.,насыпают столовую ложку медного купороса,вставляют мешалку,а потом устанавливают диафрагму,наполненную раствором поваренной соли,после в то отверстие,которое для мешалки,в банку наливается вода,а за тем вставляется в диафрагму цинковый цилиндр,после сборки элемент полностью готов к работе,остаётся соединить элементы последовательно,как обычные батарейки,и питать и заряжать приборы.

Применение пористой диафрагмы обусловлено разделением электролитов, тоесть разделением кристаллов купороса,и соляного раствора от смешивания,иначе купорос бурно вступает в реакцию и слишком быстро расходуется, даже когда элемент не используется,а через диафрагму расход купороса равномерен и экономичен,что обеспечивает долгую работу источника тока-гальванического элемента..

Удод за элементом заключается в периодической заправке купороса, смене электролита и очистке от окисления электродов. При потреблении тока около 600мА(сотовый телефон), батарея состоящая из 4-х пол-литровых элементов элементов проработает на одной заправке купороса(4 стол.л.) около месяца,при условии использования его каждый день около 6 часов. .При падении мощности периодически мешалкой надо взбалтывать медный купорос.За время работы в течении месяца израсходуется около 100г.купороса, и 40г. цинка.

Примечание. Если заменить цинк на алюминий,то элементов надо не 4 или 5, а 6 или 7 ,соединенных последовательно,так как э.д.с. алюминия ниже чем у цинка,и состовляет 0,4-0,6 V.

Если заметили ошибку, выделите фрагмент текста и нажмите Ctrl+Enter
ПОДЕЛИТЬСЯ: