Windows. Вирусы. Ноутбуки. Интернет. Office. Утилиты. Драйверы

1. Преобразование Фурье и спектр сигнала

Во многих случаях задача получения (вычисления) спектра сигнала выглядит следующим образом. Имеется АЦП, который с частотой дискретизации Fd преобразует непрерывный сигнал, поступающий на его вход в течение времени Т, в цифровые отсчеты - N штук. Далее массив отсчетов подается в некую программку, которая выдает N/2 каких-то числовых значений (программист, который утянул из инета написал программку, уверяет, что она делает преобразование Фурье).

Чтобы проверить, правильно ли работает программа, сформируем массив отсчетов как сумму двух синусоид sin(10*2*pi*x)+0,5*sin(5*2*pi*x) и подсунем программке. Программа нарисовала следующее:


рис.1 График временной функции сигнала


рис.2 График спектра сигнала

На графике спектра имеется две палки (гармоники) 5 Гц с амплитудой 0.5 В и 10 Гц - с амплитудой 1 В, все как в формуле исходного сигнала. Все отлично, программист молодец! Программа работает правильно.

Это значит, что если мы подадим на вход АЦП реальный сигнал из смеси двух синусоид, то мы получим аналогичный спектр, состоящий из двух гармоник.

Итого, наш реальный измеренный сигнал, длительностью 5 сек , оцифрованный АЦП, то есть представленный дискретными отсчетами, имеет дискретный непериодический спектр.

С математической точки зрения - сколько ошибок в этой фразе?

Теперь начальство решило мы решили, что 5 секунд - это слишком долго, давай измерять сигнал за 0.5 сек.



рис.3 График функции sin(10*2*pi*x)+0,5*sin(5*2*pi*x) на периоде измерения 0.5 сек


рис.4 Спектр функции

Что-то как бы не то! Гармоника 10 Гц рисуется нормально, а вместо палки на 5 Гц появилось несколько каких-то непонятных гармоник. Смотрим в интернетах, что да как…

Во, говорят, что в конец выборки надо добавить нули и спектр будет рисоваться нормальный.


рис.5 Добили нулей до 5 сек


рис.6 Получили спектр

Все равно не то, что было на 5 секундах. Придется разбираться с теорией. Идем в Википедию - источник знаний.

2. Непрерывная функция и представление её рядом Фурье

Математически наш сигнал длительностью T секунд является некоторой функцией f(x), заданной на отрезке {0, T} (X в данном случае - время). Такую функцию всегда можно представить в виде суммы гармонических функций (синусоид или косинусоид) вида:

(1), где:

K - номер тригонометрической функции (номер гармонической составляющей, номер гармоники)
T - отрезок, где функция определена (длительность сигнала)
Ak - амплитуда k-ой гармонической составляющей,
?k- начальная фаза k-ой гармонической составляющей

Что значит «представить функцию в виде суммы ряда»? Это значит, что, сложив в каждой точке значения гармонических составляющих ряда Фурье, мы получим значение нашей функции в этой точке.

(Более строго, среднеквадратичное отклонение ряда от функции f(x) будет стремиться к нулю, но несмотря на среднеквадратичную сходимость, ряд Фурье функции, вообще говоря, не обязан сходиться к ней поточечно. См. https://ru.wikipedia.org/wiki/Ряд_Фурье .)

Этот ряд может быть также записан в виде:

(2),
где , k-я комплексная амплитуда.

Связь между коэффициентами (1) и (3) выражается следующими формулами:

Отметим, что все эти три представления ряда Фурье совершенно равнозначны. Иногда при работе с рядами Фурье бывает удобнее использовать вместо синусов и косинусов экспоненты мнимого аргумента, то есть использовать преобразование Фурье в комплексной форме. Но нам удобно использовать формулу (1), где ряд Фурье представлен в виде суммы косинусоид с соответствующими амплитудами и фазами. В любом случае неправильно говорить, что результатом преобразования Фурье действительного сигнала будут комплексные амплитуды гармоник. Как правильно говорится в Вики «Преобразование Фурье (?) - операция, сопоставляющая одной функции вещественной переменной другую функцию, также вещественной переменной.»

Итого:
Математической основой спектрального анализа сигналов является преобразование Фурье.

Преобразование Фурье позволяет представить непрерывную функцию f(x) (сигнал), определенную на отрезке {0, T} в виде суммы бесконечного числа (бесконечного ряда) тригонометрических функций (синусоид и\или косинусоид) с определёнными амплитудами и фазами, также рассматриваемых на отрезке {0, T}. Такой ряд называется рядом Фурье.

Отметим еще некоторые моменты, понимание которых требуется для правильного применения преобразования Фурье к анализу сигналов. Если рассмотреть ряд Фурье (сумму синусоид) на всей оси Х, то можно увидеть, что вне отрезка {0, T} функция представленная рядом Фурье будет будет периодически повторять нашу функцию.

Например, на графике рис.7 исходная функция определена на отрезке {-T\2, +T\2}, а ряд Фурье представляет периодическую функцию, определенную на всей оси х.

Это происходит потому, что синусоиды сами являются периодическими функциями, соответственно и их сумма будет периодической функцией.


рис.7 Представление непериодической исходной функции рядом Фурье

Таким образом:

Наша исходная функция - непрерывная, непериодическая, определена на некотором отрезке длиной T.
Спектр этой функции - дискретный, то есть представлен в виде бесконечного ряда гармонических составляющих - ряда Фурье.
По факту, рядом Фурье определяется некоторая периодическая функция, совпадающая с нашей на отрезке {0, T}, но для нас эта периодичность не существенна.

Периоды гармонических составляющих кратны величине отрезка {0, T}, на котором определена исходная функция f(x). Другими словами, периоды гармоник кратны длительности измерения сигнала. Например, период первой гармоники ряда Фурье равен интервалу Т, на котором определена функция f(x). Период второй гармоники ряда Фурье равен интервалу Т/2. И так далее (см. рис. 8).


рис.8 Периоды (частоты) гармонических составляющих ряда Фурье (здесь Т=2?)

Соответственно, частоты гармонических составляющих кратны величине 1/Т. То есть частоты гармонических составляющих Fk равны Fk= к\Т, где к пробегает значения от 0 до?, например к=0 F0=0; к=1 F1=1\T; к=2 F2=2\T; к=3 F3=3\T;… Fk= к\Т (при нулевой частоте - постоянная составляющая).

Пусть наша исходная функция, представляет собой сигнал, записанный в течение Т=1 сек. Тогда период первой гармоники будет равен длительности нашего сигнала Т1=Т=1 сек и частота гармоники равна 1 Гц. Период второй гармоники будет равен длительности сигнала, деленной на 2 (Т2=Т/2=0,5 сек) и частота равна 2 Гц. Для третьей гармоники Т3=Т/3 сек и частота равна 3 Гц. И так далее.

Шаг между гармониками в этом случае равен 1 Гц.

Таким образом сигнал длительностью 1 сек можно разложить на гармонические составляющие (получить спектр) с разрешением по частоте 1 Гц.
Чтобы увеличить разрешение в 2 раза до 0,5 Гц - надо увеличить длительность измерения в 2 раза - до 2 сек. Сигнал длительностью 10 сек можно разложить на гармонические составляющие (получить спектр) с разрешением по частоте 0,1 Гц. Других способов увеличить разрешение по частоте нет.

Существует способ искусственного увеличения длительности сигнала путем добавления нулей к массиву отсчетов. Но реальную разрешающую способность по частоте он не увеличивает.

3. Дискретные сигналы и дискретное преобразование Фурье

С развитием цифровой техники изменились и способы хранения данных измерений (сигналов). Если раньше сигнал мог записываться на магнитофон и храниться на ленте в аналоговом виде, то сейчас сигналы оцифровываются и хранятся в файлах в памяти компьютера в виде набора чисел (отсчетов).

Обычная схема измерения и оцифровки сигнала выглядит следующим образом.


рис.9 Схема измерительного канала

Сигнал с измерительного преобразователя поступает на АЦП в течение периода времени Т. Полученные за время Т отсчеты сигнала (выборка) передаются в компьютер и сохраняются в памяти.


рис.10 Оцифрованный сигнал - N отсчетов полученных за время Т

Какие требования выдвигаются к параметрам оцифровки сигнала? Устройство, преобразующее входной аналоговый сигнал в дискретный код (цифровой сигнал) называется аналого-цифровой преобразователь (АЦП, англ. Analog-to-digital converter, ADC) (Wiki).

Одним из основных параметров АЦП является максимальная частота дискретизации (или частота семплирования, англ. sample rate) - частота взятия отсчетов непрерывного во времени сигнала при его дискретизации. Измеряется в герцах. ((Wiki))

Согласно теореме Котельникова, если непрерывный сигнал имеет спектр, ограниченный частотой Fмакс, то он может быть полностью и однозначно восстановлен по его дискретным отсчетам, взятым через интервалы времени , т.е. с частотой Fd ? 2*Fмакс, где Fd - частота дискретизации; Fмакс - максимальная частота спектра сигнала. Другими слова частота оцифровки сигнала (частота дискретизации АЦП) должна как минимум в 2 раза превышать максимальную частоту сигнала, который мы хотим измерить.

А что будет, если мы будем брать отсчеты с меньшей частотой, чем требуется по теореме Котельникова?

В этом случае возникает эффект «алиасинга» (он же стробоскопический эффект, муаровый эффект), при котором сигнал высокой частоты после оцифровки превращается в сигнал низкой частоты, которого на самом деле не существует. На рис. 5 красная синусоида высокой частоты - это реальный сигнал. Синяя синусоида более низкой частоты - фиктивный сигнал, возникающий вследствие того, за время взятия отсчета успевает пройти больше, чем пол-периода высокочастотного сигнала.


Рис. 11. Появление ложного сигнала низкой частоты при недостаточно высокой частоте дискретизации

Чтобы избежать эффекта алиасинга перед АЦП ставят специальный антиалиасинговый фильтр - ФНЧ (фильтр нижних частот), который пропускает частоты ниже половины частоты дискретизации АЦП, а более высокие частоты зарезает.

Для того, чтобы вычислить спектр сигнала по его дискретным отсчетам используется дискретное преобразование Фурье (ДПФ). Отметим еще раз, что спектр дискретного сигнала «по определению» ограничен частотой Fмакс, меньшей половине частоты дискретизации Fd. Поэтому спектр дискретного сигнала может быть представлен суммой конечного числа гармоник, в отличие от бесконечной суммы для ряда Фурье непрерывного сигнала, спектр которого может быть неограничен. Согласно теореме Котельникова максимальная частота гармоники должна быть такой, чтобы на нее приходилось как минимум два отсчета, поэтому число гармоник равно половине числа отсчетов дискретного сигнала. То есть если в выборке имется N отсчетов, то число гармоник в спектре будет равно N/2.

Рассмотрим теперь дискретное преобразование Фурье (ДПФ).

Сравнивая с рядом Фурье

Видим, что они совпадают, за исключением того, что время в ДПФ имеет дискретный характер и число гармоник ограничено величиной N/2 - половиной числа отсчетов.

Формулы ДПФ записываются в безразмерных целых переменных k, s, где k – номера отсчетов сигнала, s – номера спектральных составляющих.
Величина s показывает количество полных колебаний гармоники на периоде Т (длительности измерения сигнала). Дискретное преобразование Фурье используется для нахождения амплитуд и фаз гармоник численным методом, т.е. «на компьютере»

Возвращаясь к результатам, полученным в начале. Как уже было сказано выше, при разложении в ряд Фурье непериодической функции (нашего сигнала), полученный ряд Фурье фактически соответствует периодической функции с периодом Т. (рис.12).


рис.12 Периодическая функция f(x) с периодом Т0, с периодом измерения Т>T0

Как видно на рис.12 функция f(x) периодическая с периодом Т0. Однако из-за того, что длительность измерительной выборки Т не совпадает с периодом функции Т0, функция, получаемая как ряд Фурье, имеет разрыв в точке Т. В результате спектр данной функции будет содержать большое количество высокочастотных гармоник. Если бы длительность измерительной выборки Т совпадала с периодом функции Т0, то в полученном после преобразования Фурье спектре присутствовала бы только первая гармоника (синусоида с периодом равным длительности выборки), поскольку функция f(x) представляет собой синусоиду.

Другими словами, программа ДПФ «не знает», что наш сигнал представляет собой «кусок синусоиды», а пытается представить в виде ряда периодическую функцию, которая имеет разрыв из-за нестыковки отдельных кусков синусоиды.

В результате в спектре появляются гармоники, которые должны в сумме изобразить форму функции, включая этот разрыв.

Таким образом, чтобы получить «правильный» спектр сигнала, являющегося суммой нескольких синусоид с разными периодами, необходимо чтобы на периоде измерения сигнала укладывалось целое число периодов каждой синусоиды. На практике это условие можно выполнить при достаточно большой длительности измерения сигнала.


Рис.13 Пример функции и спектра сигнала кинематической погрешности редуктора

При меньшей длительности картина будет выглядеть «хуже»:


Рис.14 Пример функции и спектра сигнала вибрации ротора

На практике бывает сложно понять, где «реальные составляющие», а где «артефакты», вызванные некратностью периодов составляющих и длительности выборки сигнала или «скачками и разрывами» формы сигнала. Конечно слова «реальные составляющие» и «артефакты» не зря взяты в кавычки. Наличие на графике спектра множества гармоник не означает, что наш сигнал в реальности из них «состоит». Это все равно что считать, будто число 7 «состоит» из чисел 3 и 4. Число 7 можно представить в виде суммы чисел 3 и 4 - это правильно.

Так и наш сигнал… а вернее даже не «наш сигнал», а периодическую функцию, составленную путем повторения нашего сигнала (выборки) можно представить в виде суммы гармоник (синусоид) с определенными амплитудами и фазами. Но во многих важных для практики случаях (см. рисунки выше) действительно можно связать полученные в спектре гармоники и с реальными процессами, имеющими циклический характер и вносящими значительный вклад в форму сигнала.

Некоторые итоги

1. Реальный измеренный сигнал, длительностью T сек, оцифрованный АЦП, то есть представленный набором дискретных отсчетов (N штук), имеет дискретный непериодический спектр, представленный набором гармоник (N/2 штук).

2. Сигнал представлен набором действительных значений и его спектр представлен набором действительных значений. Частоты гармоник положительны. То, что математикам бывает удобнее представить спектр в комплексной форме с использованием отрицательных частот не значит, что «так правильно» и «так всегда надо делать».

3. Сигнал, измеренный на отрезке времени Т определен только на отрезке времени Т. Что было до того, как мы начали измерять сигнал, и что будет после того - науке это неизвестно. И в нашем случае - неинтересно. ДПФ ограниченного во времени сигнала дает его «настоящий» спектр, в том смысле, что при определенных условиях позволяет вычислить амплитуду и частоту его составляющих.

Использованные материалы и другие полезные материалы.

Любая волна сложной формы может быть представлена как сумма простых волн.

Жозеф Фурье очень хотел описать в математических терминах, как тепло проходит сквозь твердые предметы (см. Теплообмен). Возможно, его интерес к теплу вспыхнул, когда он находился в Северной Африке: Фурье сопровождал Наполеона во французской экспедиции в Египет и прожил там некоторое время. Чтобы достичь своей цели, Фурье должен был разработать новые математические методы. Результаты его исследований были опубликованы в 1822 году в работе «Аналитическая теория тепла» (Theorie analytique de la chaleur ), где он рассказал, как анализировать сложные физические проблемы путем разложения их на ряд более простых.

Метод анализа был основан на так называемых рядах Фурье . В соответствии с принципом интерференции ряд начинается с разложения сложной формы на простые — например, изменение земной поверхности объясняется землетрясением, изменения орбиты кометы — влиянием притяжения нескольких планет, изменение потока тепла — его прохождением сквозь препятствие неправильной формы из теплоизолирующего материала. Фурье показал, что сложная форма волны может быть представлена как сумма простых волн. Как правило, уравнения, описывающие классические системы, легко решаются для каждой из этих простых волн. Далее Фурье показал, как эти простые решения можно суммировать, чтобы получить решение всей сложной задачи в целом. (Говоря языком математики, ряд Фурье — это метод представления функции суммой гармоник — синусоид и косинусоид, поэтому анализ Фурье был известен также под названием «гармонический анализ».)

До появления компьютеров в середине ХХ столетия методы Фурье и им подобные были лучшим оружием в научном арсенале при наступлениях на сложности природы. Со времени появления комплексных методов Фурье ученые смогли использовать их для решения уже не только простых задач, которые можно решить прямым применением законов механики Ньютона и других фундаментальных уравнений. Многие великие достижения ньютоновской науки в XIX веке фактически были бы невозможны без использования методов, впервые предложенных Фурье. В дальнейшем эти методы применялись в решении задач в различных областях — от астрономии до машиностроения.

Жан-Батист Жозеф ФУРЬЕ
Jean-Baptiste Joseph Fourier, 1768-1830

Французский математик. Родился в Осере; в возрасте девяти лет остался сиротой. Уже в юном возрасте проявил способности к математике. Фурье получил образование в церковной школе и военном училище, затем работал преподавателем математики. На протяжении всей жизни активно занимался политикой; был арестован в 1794 году за защиту жертв террора. После смерти Робеспьера был выпущен из тюрьмы; принимал участие в создании знаменитой Политехнической школы (Ecole Polytechnique) в Париже; его положение послужило ему плацдармом для продвижения при режиме Наполеона. Сопровождал Наполеона в Египет, был назначен губернатором Нижнего Египта. По возвращении во Францию в 1801 году был назначен губернатором одной из провинций. В 1822 году стал постоянным секретарем Французской академии наук — влиятельная должность в научном мире Франции.

В Mathcad есть встроенные средства быстрого преобразования Фурье (БПФ), которые существенно упрощают процедуру приближенного спектрального анализа.

БПФ - быстрый алгоритм переноса сведений о функции, заданной 2 m (m - целое число) отсчетами во временной области, в частотную область.

элементов:

Рис.3 Спектральный анализ с использованием БПФ

Функция fft(v )реализует прямое БПФ возвращает прямое БПФ 2 m -мерного вектора v , где v - вектор, элементы которого хранят отсчеты функции f (t ). Результатом будет вектор А размерности 1 + 2 m - 1 с комплексными элементами - отсчетами в частотной области. Фактически действительная и мнимая части вектора есть коэффициенты Фурье a k и b k , что существенно упрощает их получение.

Функция ifft(v ) реализует обратное БПФ - возвращает обратное БПФ для вектора v с комплексными элементами. Вектор v имеет 1 + 2 m – 1

Фильтрация аналоговых сигналов

Ø Определение Фильтрация - выделение полезного сигнала из его смеси с мешающим сигналом - шумом. Наиболее распространенный тип фильтрации - частотная фильтрация. Если известна область частот, занимаемых полезным сигналом, достаточно выделить эту область и подавить те области, которые заняты шумом.

Используя прямое БПФ, сигнал с шумом преобразуется из временной области с частотную, что создает вектор f из 64 частотных составляющих.

Затем выполняется фильтрующее преобразовании с помощью функции Хевисайда

Ф(х ) - Ступенчатая функция Хевисайда .

Возвращает 1, если х 0; иначе 0.

Отфильтрованный сигнал (вектор g ) подвергается обратному БПФ и создает вектор выходного сигнала h .

Сравнение временных зависимостей исходного и выходного сигналов, показывает, что выходной сигнал почти полностью повторяет входной и в значительной мере избавлен от высокочастотных шумовых помех, маскирующих полезный сигнал

Рис.4. Фильтрация аналоговых сигналов

Рис.4 иллюстрирует технику фильтрации с применением БПФ.Сначала синтезируется исходный сигнал, представленный 128 отсчетами вектора v . Затем к этому сигналу присоединяется шум с помощью генератора случайных чисел (функция rnd ) и формируется вектор из 128 отсчетов зашумленного сигнала.

.
Порядок выполнения лабораторной работы

Задание 1. Вычислить первые шесть пар коэффициентов разложения в ряд Фурье функции f (t ) на отрезке .

Построить графики 1, 2 и 3 гармоник.

Выполнить гармонический синтез функции f (t ) по 1, 2 и 3 гармоникам. Результаты синтеза отобразить графически.

Варианты задания 1

f (t ) № варианта f (t ) № варианта f (t )
cos e |sin 3 t|

Задание 2. Выполнить классический спектральный анализ и синтез функции f (t ). Отобразить графически спектры амплитуд и фаз, результат спектрального синтеза функции f (t ).


Задание 3. Выполнить численный спектральный анализ и синтез функции f (t ). Для этого необходимо задать исходную функцию f (t ) дискретно в 32 отсчетах. Отобразить графически спектры амплитуд и фаз, результат спектрального синтеза функции f (t ).

Задание 4. Выполнить спектральный анализ и синтез функции f (t ) с помощью БПФ. Для этого необходимо:

· задать исходную функцию f (t ) дискретно в 128 отсчетах;

· выполнить прямое БПФ с помощью функции fft и отобразить графически найденные спектры амплитуд и фаз первых шести гармоник;

· выполнить обратное БПФ с помощью функции ifft и отобразить графически результат спектрального синтеза функции f (t ).

Задание 5. Выполнить фильтрацию функции f (t ) с помощью БПФ:

· синтезировать функцию f (t ) в виде полезного сигнала, представленного 128 отсчетами вектора v ;

· к полезному сигналу v присоединить шум с помощью функции rnd (rnd (2) - 1) и сформировать вектор из 128 отсчетов зашумленного сигнала s ;

· преобразовать сигнал с шумом s из временной области в частотную, используя прямое БПФ (функция fft ). В результате получится сигнал f из 64 частотных составляющих;

· выполнить фильтрующее преобразование с помощью функции Хевисайда (параметр фильтрации  = 2);

· с помощью функции ifft выполнить обратное БПФ и получить вектор выходного сигнала h ;

· построить графики полезного сигнала v и сигнала, полученного фильтрацией зашумленного сигнала s .

Тема 1. «Логика высказываний»

Задание

1. Установить, является ли данная формула тождественно-истинной.

2. Данное высказывание записать в виде формулы логики высказываний. Построить отрицание данного высказывания в виде формулы, не содержащей внешних знаков отрицания. Перевести на естественный язык.

3. Установить, является ли данное рассуждение правильным, (проверить, следует ли заключение из конъюнкции посылок).


Варианты индивидуальных заданий темы ЛВ

Вариант №1

3. Если человек принял какое-то решение, и он правильно воспитан, то он преодолеет все конкурирующие желания. Человек принял решение, но не преодолел конкурирующих желаний. Следовательно, он неправильно воспитан.

Вариант №2

2. Идет дождь, и идет снег.

3. Если данное явление психическое, то оно обусловлено внешним воздействием на организм. Если оно физиологическое, то оно тоже обусловлено внешним воздействием на организм. Данное явление не психическое и не физиологическое. Следовательно, оно не обусловлено внешним воздействием на организм.

Вариант №3

2. Он хороший студент или хороший спортсмен.

3. Если подозреваемый совершил кражу, то, либо она была тщательно подготовлена, либо он имел соучастников. Если бы кража была тщательно подготовлена, то, если бы были соучастники, украдено было бы много. Украдено мало. Значит, подозреваемый невиновен.

Вариант №4

2. Если стальное колесо нагреть, то его диаметр увеличится.

3. Если курс ценных бумаг растет, или процентная ставка снижается, то падает курс акций. Если процентная ставка снижается, то либо курс акций не падает, либо курс ценных бумаг не растет. Курс акций понижается. Следовательно, снижается процентная ставка.

Вариант № 5

3. Либо свидетель не был запуган, либо, если Генри покончил жизнь самоубийством, то записка была найдена. Если свидетель был запуган, то Генри не покончил жизнь самоубийством. Записка была найдена. Следовательно, Генри покончил жизнь самоубийством.

Вариант №6

2. Он учится в институте или на курсах иностранных языков.

3. Если философ – дуалист, то он не материалист. Если он не материалист, то он диалектик или метафизик. Он не метафизик. Следовательно, он диалектик или дуалист.

Вариант №7

2. Он способный и прилежный.

3. Если капиталовложения останутся постоянными, то возрастут правительственные расходы или возникнет безработица. Если правительственные расходы не возрастут, то налоги будут снижены. Если налоги будут снижены и капиталовложения останутся постоянными, то безработица не возрастет. Безработица не возрастет. Следовательно, правительственные расходы возрастут.

Вариант №8

2. Эта книга сложная и неинтересная.

3. Если исходные данные корректны и программа работает правильно, то получается верный результат. Результат неверен. Следовательно, исходные данные некорректны или программа работает неправильно.

Вариант №9

2. Он и жнец, и швец, и на дуде игрец.

3. Если цены высоки, то и заработная плата высока. Цены высоки или применяется регулирование цен. Если применяется регулирование цен, то нет инфляции. Наблюдается инфляция. Следовательно, заработная плата высока..

Вариант №10

2. Если воду охлаждать, то объем ее будет уменьшаться.

3. Если я устал, я хочу вернуться домой. Если я голоден, я хочу вернуться домой или пойти в ресторан. Я устал и голоден. Поэтому я хочу вернуться домой.

Вариант №11

2. Если число оканчивается нулем, оно делится на 5.

3. Если завтра будет холодно, то я надену теплую куртку, если рукав будет починен. Завтра будет холодно, и рукав не будет починен. Значит, я не надену теплую куртку.

Вариант №12

2. Тело, лишенное опоры, падает на землю.

3. Если будет идти снег, машину будет трудно вести. Если будет трудно вести машину, я опоздаю, если не выеду пораньше. Идет снег, и я выеду пораньше. Значит, я не опоздаю.

Вариант №13

2. Иван и Петр знают Федора.

3. Если человек говорит неправду, то он заблуждается или сознательно вводит в заблуждение других. Этот человек говорит неправду и явно не заблуждается. Значит, он сознательно вводит в заблуждение других.

Вариант №14

2. Эта книга полезная и интересная.

3. Если бы он был умен, то он увидел бы свою ошибку. Если бы он был искренен, то он признался бы в ней. Однако, он не умен и не искренен. Следовательно, он или не увидит свою ошибку, или не признается в ней.

Вариант № 15

2. Этот актер играет в театре и не играет в кино.

3. Если человек является материалистом, то он признает познаваемость мира, Если человек признает познаваемость мира, то он не является агностиком. Следовательно, если человек не является последовательным материалистом, то он – агностик.

Вариант №16

2. Если собаку дразнить, она укусит

3. Если в мире есть справедливость, то злые люди не могут быть счастливы. Если мир есть создание злого гения, то злые люди могут быть счастливы. Значит, если в мире есть справедливость, то мир не может быть созданием злого гения

Вариант №17

2. Если вы владеете английским языком, вы справитесь с этой работой.

3. Если Иванов работает, то он получает зарплату. Если же Иванов учится, то он получает стипендию. Но Иванов не получает зарплату или не получает стипендию. Следовательно, он не работает или не учится.

Вариант №18

2. Если функция нечетная, то ее график симметричен относительно начала координат.

3. Если я лягу спать, то не сдам экзамен. Если я буду заниматься ночью, то тоже не сдам экзамен. Следовательно, я не сдам экзамен.

Вариант №19

2. Если число делится на 3, то сумма его цифр делится на 3.

3. Если я пойду завтра на первую лекцию, то должен буду встать рано. Если я пойду вечером на дискотеку, то лягу спать поздно. Если я лягу спать поздно, а встану рано, я буду плохо себя чувствовать. Следовательно, я должен пропустить первую лекцию или не ходить на дискотеку.

Вариант №20

2. Если слово ставится в начале предложения, то оно пишется с большой буквы.

3. Если x 0 и y 0, то x 2 + y 2 > 0. Если x = 0 и y = 0, то выражение (x y ):(x + y ) не имеет смысла. Неверно, что x 2 + y 2 > 0. Следовательно, не имеет смысла выражение (x y ):(x + y ).

Вариант №21

2. Иван и Марья любят друг друга.

3. Если книга, которую я читаю, бесполезная, то она несложная. Если книга сложная, то она неинтересная. Эта книга сложная и интересная. Значит, она полезная.

Вариант №22

2. Плох тот солдат, который не мечтает стать генералом.

3. Если завтра будет дождь, я надену плащ. Если будет ветер, я надену куртку. Следовательно, если не будет дождя и ветра, я не надену ни плаща, ни куртки.

Вариант №23

2. Если ряд сходится, то его общий член стремится к нулю.

3. Если он не трус, то он поступит в соответствии с собственными убеждениями. Если он честен, то он не трус. Если он не честен, то он не признает своей ошибки. Он признал свою ошибку. Значит, он не трус.

Вариант №24

2. Ни Иван, ни Федор не отличники.

3. Если он упрям, то он может ошибаться. Если он честен, то он не упрям. Если он не упрям, то он не может одновременно не ошибаться и быть честным. Значит, он не упрям.

Вариант № 25

2. Либо Иван, либо Петр знают Федора.

3. Если зарплату выдают вовремя, то ожидаются либо выборы, либо акция протеста. Зарплату выдали вовремя. Выборы не ожидаются. Значит, ожидается акция протеста.

Вариант № 26

2. Если составить алгоритм и написать программу, то можно решить эту задачу.

3. Если человек занимается спортом, то он здоров. Если человек здоров, то он счастлив, Этот человек занимается спортом. Значит, он счастлив.

Вариант № 27

2. Вечером мы пойдем на хоккей или будем смотреть его по телевизору.

3. Антон переутомился или болен. Если он переутомился, то он раздражается. Он не раздражается. Следовательно, он болен.

Вариант № 28

2. Если я не выспался или голоден, я не могу заниматься.

3. Если фирма ориентирована на усиление маркетинга, то она намерена получить крупную прибыль на выпуске новых товаров. Если фирма предусматривает расширение торговой сети, то она намерена получить крупную прибыль от увеличения продаж. Фирма предусматривает усиление маркетинга или собирается расширить торговую сеть, Следовательно, она намерена получить крупную прибыль.

Вариант № 29

2. Если налоги не будут снижены, то мелкие производители разорятся и оставят производство.

3. Контракт будет выполнен тогда и только тогда, когда дом будет закончен в феврале. Если дом будет закончен в феврале То мы можем переехать в марте. Контракт будет выполнен, Следовательно, мы можем переехать в марте.

Вариант № 30

2. Если наша команда не займет первое место, мы останемся дома и будем тренироваться.

3. Намеченная программа удастся, если застать противника врасплох или если его позиции плохо защищены. Захватить его врасплох можно, если он беспечен. Он не будет беспечен, если его позиции плохо защищены. Значит, программа не удастся.


Тема 2. Линейная парная регрессия

Эта тема включает выполнение шести лабораторных работ, посвященных построению и исследованию уравнения линейной регрессии вида

Пример 1.1 .

Для определения зависимости между сменной добычей угля на одного рабочего (переменная Y , измеряемая в тоннах) и мощностью угольного пласта (переменная X , измеряемая в метрах) на 10 шахтах были проведены исследования, результаты которых представлены таблицей.

i
x i
y i

Лабораторная работа № 1

Вычисление коэффициентов уравнения ЛР

Цель работы Вычисление коэффициентов уравнения линейной регрессии по пространственной выборке.

Расчетные соотношения. Коэффициенты, определяемые на основе метода наименьших квадратов, являются решением системы уравнений

Решая эту систему уравнений, получаем

,

где m XY – выборочное значение корреляционного момента, определенного по формуле:

,

– выборочное значение дисперсии величины X , определяемой по формуле:

Решение

Вычислим эти коэффициенты , используя табличный процессор Excel. На рисунке показан фрагмент документа Excel, в котором:

а) размещены данные таблицы;

б) запрограммировано вычисление коэффициентов , системы;

в) запрограммировано вычисление b 0 , b 1 по формулам.

Заметим, что для вычисления средних значений используется функция Excel СРЗНАЧ (диапазон ячеек ).

В результате выполнения запрограммированных вычислений получаем

b 0 = –2.75; b 1 = 1.016,

а само уравнение регрессии примет вид

Задание . Используя полученное уравнение регресии, определите производительность труда шахтера, если толщина угольного слоя равна:

а) 8.5 метров (интерполяция данных);

б) 14 метров (экстраполяция данных).

Рис. 1.Вычисление коэффициентов линейной регрессии


Лабораторная работа № 2

Вычисление выборочного коэффициента корреляции

Цель работы. Вычисление выборочного коэффициента корреляции по пространственной выборке.

Расчетные соотношения. Выборочный коэффициент корреляции определяется соотношением

где , , .

Решение

Фрагмент документа Excel, вычисляющего величины: коэффициента корреляции

Рис. 2. Вычисление коэффициента корреляции


Лабораторная работа № 3

Вычисление оценок дисперсий парной ЛР

Цель работы. Вычислить оценки для дисперсий коэффициентов b 0 , b 1 ,.

Расчетные соотношения. Оценки для дисперсий коэффициентов определяются формулами:

,

где - оценка дисперсии .

Решение. На рис.3 показан фрагмент документа Excel, в котором выполнены вычисления оценок дисперсий . Заметим, что

· значения коэффициентов взяты из лабораторной работы № 1 и ячейки (В1,В2), в которых они находятся, имеют абсолютную адресацию ($В$1, $В$2) в выражениях, вычисляющих значения регрессии ;

· значение (ячейка В19) взято из лабораторной работы № 1.Получаем следующие значения:

.

Рис. 3. Вычисление оценок для дисперсий коэффициентов


Лабораторная работа №4

Функции Excel для коэффициентов парной ЛР

Цель работы. Вычислить коэффициенты уравнения линейной регрессии по пространственной выборке, используя функцииExcel.

Приведем некоторые статистические функции Excel, полезные при построении парной линейной регрессии.

Функция ОТРЕЗОК.

ОТРЕЗОК(диапазон_значений_ ; диапазон_значений_ ).

Функция НАКЛОН. Вычисляет коэффициент и обращение имеет вид

НАКЛОН(диапазон_значений_ ; диапазон_значений_ ).

Функция ПРЕДСКАЗ. Вычисляет значение линейной парной регрессии при заданном значении независимой переменной (обозначена через ) и обращение имеет вид

ПРЕДСКАЗ( ;диапазон_значений_ ;диапазон_значений_ ).

Функция СТОШYX. Вычисляет оценку для среднеквадратического отклонения возмущений и обращение имеет вид (YX – латинские буквы):

СТОШYX(диапазон_значений_ ; диапазон_значений_ ).

Решение. Фрагмент документа Excel, вычисляющего требуемые величины приведен. Обратите внимание на использовании абсолютной адресации при вычислении .

Рис. 4. Использование функций Excel

Задание. Сравните вычисленные значения с значениями, полученными в лабораторных работах №1 и № 3.


Лабораторная работа № 5

Построение интервальной оценки для функции парной ЛР

Цель работы. Построение интервальной оценки для функции регрессии с надежностью g = 0.95, используя для этого уравнение регрессии , построенное в лабораторной работе № 1.

Расчетные соотношения. Интервальная оценка (доверительный интервал) для (при заданном значении ) с надежностью (доверительной вероятностью) равной g определяется выражением

Оценка для дисперсии функции имеет вид

,

где - оценка дисперсии .

Таким образом, две величины (зависит от ) и , вычисляемая с помощью функции Excel:

СТЬЮДРАСПОБР().

Решение. Значения нижней и верхней границ интервала будем вычислять для .

Фрагмент документа, осуществляющий эти вычисления, приведен на рисунке


Рис.5. Построение интервальной оценки для

Величины , , (ячейки В16:В18) и коэффициенты (В1:В2) взяты из предыдущих лабораторных работ. Величина = СТЬЮДРАСПОБР() = 2.31.


Лабораторная работа № 6

Проверка значимости уравнения ЛР по критерию Фишера

Цель работы. По данным таблицы оценить на уровне a = 0.05 значимость уравнения регрессии

,

построенного в лабораторной работе № 1.

Расчетные соотношения. Уравнение парной регрессии значимо с уровнем значимости a, если выполняется следующее неравенство:

где F g; 1; n -2 – значения квантиля уровня g F -распределения с числами степеней свободы k 1 = 1 и k 2 = n – 2.

Для вычисления квантиля можно использовать следующее выражение

FРАСПОБР().

Суммы определяются выражениями:

, .

Критерий часто называют критерием Фишера или F-критерием.

Решение. Приведен фрагмент документа Excel, вычисляющего значения Q e , и критерий F . В столбце D значения вычисляются по формуле . Значения коэффициентов взяты из лабораторной работы № 1.

Получены следующие значения , , . Вычисляем квантиль F 0.95; 1; 8 = 5.32. Неравенство выполняется, т. к. 24.04 > 5.32 и поэтому уравнение регрессии значимо с уровнем значимости a = 0.05.

Рис. 6. Вычисление величины F – критерия


Тема 3 Нелинейная парная регрессия

Эта тема включает выполнение двух лабораторных работ, посвященных построению уравнения нелинейной парной регрессии. Пространственная выборка для построения регрессии взята из следующего примера.

Пример В таблице приведены значения независимой переменной (доход а семьи в тысяч рублей) и значения зависимой переменной (доля расходов на товары длительного пользования в процентах от общей суммы расходов).

13.4 15.4 16.5 18.6 19.1

Лабораторная работа № 7

Построение нелинейной регрессии с использованием

Команды «Добавить линию тренда»

Цель работы Используя пространственную выборку необходимо построить уравнение нелинейной регрессии вида с использованием команды «Добавить линию тренда» и вычислить коэффициент детерминации .

Команда «Добавить линию тренда». Используется для выделения тренда (медленных изменений) при анализе временных рядов.

Однако эту команду можно использовать и для построения уравнения нелинейной регрессии, рассматривая в качестве времени независимую переменную .

Эта команда позволяет построить следующие уравнения регрессии:

· линейную

· полиноминальную ();

· логарифмическую

· степенную ;

· экспоненциальную .

Для построения одной из перечисленных регрессий необходимо выполнить следующие шаги:

Шаг 1. В выбранном листе Excel ввести по столбцам исходные данные .

Шаг 2. По этим данным построить график в декартовый системе координат.

Шаг 3. Установить курсор на построенном графике, сделать щелчок правой кнопкой и в появившемся контекстном меню выполнить команду Добавить линию тренда

Шаг 4. В появившемся диалоговом окне активизировать закладку «Тип» и выбрать нужное уравнение регрессии.

Рис. 2.1. Построение графика по исходным данным

Рис. 2.2. Выбор вида уравнения регрессии

Шаг 5. Активизировать закладку «Параметры» и «включить» необходимые для нас опции:

· «Показать уравнение на диаграмме» - на диаграмме будет показано выбранное уравнение регрессии с вычисленным коэффициентами;

Рис. 2.3. Задание опций вывода информации

· «Поместить на диаграмму величину достоверности аппроксимации (R^2)» - на диаграмме будет показана значение коэффициент детерминации (для нелинейной регрессии -индекс детерминации), вычисляемый по формуле

· Если по построенному уравнению регрессии необходимо выполнить прогноз, то нужно указать число периодов прогноза.

Назначение других опций понятны из своих названий.

Шаг 6. После задания всех перечисленных опций щелкнуть на кнопке «OK» и на диаграмме появиться формула построенного уравнения регрессии и значение индекса детерминации (выделено затемнением).

Рис. 2.4. График и уравнение построенной регрессии

Решение. Построение уравнения осуществляем по описанным выше шагам. Получаем уравнение

,

для которого коэффициент детерминации равен . Такая величина говорит о хорошем соответствии построенного уравнения исходным данным.


Лабораторная работа № 8

Выбор наилучшей нелинейной регрессии

Цель работы. Используя пространственную выборку и команду «Добавить линию тренда» построить шесть уравнений нелинейной регрессии (полиномиальное уравнение строится при и ), определить для каждого уравнения коэффициент детерминации (значение выводится), приведенный коэффициент детерминации (значение вычисляется) и по максимальному значению найти наилучшее уравнение нелинейной регрессии.

Приведенный коэффициент детерминации. Коэффициент детерминации характеризует близость построенной регрессии к исходным данным, которые содержат «нежелательную» случайную составляющую . Очевидно, что, построив по данным полином 5-ого порядка, получаем «идеальное» значение , по такое уравнение содержит в себе не только независимую переменную , но составляющую и это снижает точность использования построенного уравнения для прогноза.

Поэтому при выборе уравнения регрессии надо учитывать не только величину , но и «сложность» регрессионного уравнения, определяемое количеством коэффициентов уравнения.

Такой учет удачно реализован в так называемом приведенном коэффициенте детерминации:

,

где - количество вычисляемых коэффициентов регрессии. Видно, что при неизменных увеличение уменьшает значение . Если количество коэффициентов у сравниваемых уравнений регрессии одинаково (например, ), то отбор наилучшей регрессии можно осуществлять по величине . Если в уравнениях регрессии меняется число коэффициентов, то такой отбор целесообразно по величине .

Решение. Для построения каждого уравнения выполняем шаги 2 – 6 (для первого уравнения еще и шаг 1) и размещаем в одном документе шесть окон, в которых выводятся найденные уравнения регрессии уравнения и величина . Затем формулу уравнения и заносим в таблицу. Далее вычисляем приведенный коэффициент детерминации и заносим эти значения также в таблицу.

В качестве «наилучшего» уравнения регрессии выбираем уравнение, имеющее наибольшую величину приведенный коэффициент детерминации . Таким уравнением является степенная функции (в таблице строка с этой функцией выделена серым цветом).

, имеющая величину = 0.9901.

Уравнение
0.949 0.938
0.9916 0.9895
(полиноминальная, ) 0.9896 0.9827
(полиноминальная, ) 0.9917 0.9792
0.9921 0.9901
0.9029 0,8786

Задание. Определить по величине «наихудшее» уравнение регрессии.


Тема 4. Линейная множественная регрессия

Эта тема включает выполнение лабораторных работ, посвященных построению и исследованию уравнения линейной множественной регрессии вида

Пространственная выборка для построения этого уравнения взята из следующего примера.

Пример Данные о сменной добыче угля на одного рабочего (переменная Y ), мощности пласта (переменная X 1 и уровнем механизации работ в шахте (переменная X 2) , характеризующие процесс добычи угля в 10 шахтах приведены в таблице. Предполагая, что между переменными Y, X 1 , X 2 существует линейная зависимость, необходимо найти аналитическое выражение для этой зависимости, т.е. построить уравнение линейной регрессии.

Номер шахты i x i 1 x i 2 ,т.е. матрица

а) обратиться к Мастеру функций и выбрать нужную категорию функций, затем указать имя функции и задать соответствующие диапазоны ячеек,

б) ввести с клавиатуры имя функции задать соответствующие диапазоны ячеек.

Транспонирование матрицы осуществляется с помощью функции ТРАНСП (категория функций – Ссылки и массивы

ТРАНСП (диапазон ячеек ),

где параметр диапазон ячеек задает все элементы транспонируемой матрицы (или вектора).

Умножение матриц осуществляется с помощью функции МУМНОЖ (категория функций – Математические ).Обращение к функции имеет вид:

МУМНОЖ(диапазон_1;диапазон_2 ),

где параметр диапазон_1 задает элементы первой из перемножаемых матриц, а параметр диапазон_2 – элементы второй матрицы. При этом перемножаемые матрицы должны иметь соответствующие размеры (если первая матрица , вторая - , то результатом будет матрица ).

Обращение матрицы (вычисление обратной матрицы) осуществляется с помощью функции МОБР (категория функций – Математические ). Обращение к функции имеет вид:

МОБР (диапазон ячеек ),

где параметр диапазон ячеек задает все элементы обращаемой матрицы, которая должна быть квадратной и невырожденной.

При использовании этих функций необходимо соблюдать следующий порядок действий:

· выделить фрагмент ячеек , в которые будет занесен результат выполнения матричных функций (при этом надо учитывать размеры исходных матриц);

· ввести арифметическое выражение , содержащее обращение к матричным функциям Excel;

· одновременно нажать клавиши , , . Если этого не сделать, то вычислится только один элемент результирующей матрицы или вектора.

Режим Регрессия модуля Анализ данных. Табличный процессор Excel содержит модуль Анализ данных. Этотмодуль позволяет выполнить статистический анализ выборочных данных (построение гистограмм, вычисление числовых характеристик и т.д.). Режим работы Регрессия этого модуля осуществляет вычисление коэффициентов линейной множественной регрессии с переменными, построение доверительные интервалы и проверку значимости уравнения регрессии.

Для вызова режима Регрессия модуля Анализ данных необходимо:

· обратиться к пункту менюСервис ;

· в появившемся меню выполнить команду Анализ данных;

· в списке режимов работы модуля Анализ данных выбрать режим Регрессия и щелкнуть на кнопке Ok .

После вызова режимаРегрессия на экране появляется диалоговое окно, в котором задаются следующие параметры:

1. Входной интервал Y – вводится диапазон адресов ячеек, содержащих значения (ячейки должны составлять один столбец).

Рис. 3.2. Диалоговое окно режима Регрессия

2. Входной интервал X – вводится диапазон адресов ячеек, содержащих значения независимых переменных. Значения каждой переменной представляются одним столбцом. Количество переменных не более 16 (т.е. ).

3. Метки – включается если первая строка во входном диапазоне содержит заголовок. В этом случае автоматически будут созданы стандартные названия.

4. Уровень надежности – при включении этого параметра задается надежность при построении доверительных интервалов.

5. Константа-ноль – при включении этого параметра коэффициент .

6. Выходной интервал – при включении активизируется поле, в которое необходимо ввести адрес левой верхней ячейки выходного диапазона, который содержит ячейки с результатами вычислений режима Регрессия.

7. Новый рабочий лист – при включении этого параметра открывается новый лист, в который начиная с ячейки А1 вставляются результаты работы режима Регрессия.

8. Новая рабочая книга - при включении этого параметра открывается новая книга на первом листе которой начиная с ячейки А1 вставляются результаты работы режима Регрессия.

9. Остатки – привключении вычисляется столбец, содержащий невязки .

10. Стандартизованные остатки – при включении вычисляется столбец, содержащий стандартизованные остатки.

После этого режим Регрессия и в диалоговом окне зададим необходимые параметры. Заметим, из-за большой «ширины» таблиц, в которых выводятся результаты работы режима Регрессия, часть результатов помещены в другие ячейки.

Дадим краткую интерпретацию показателям, значения которых вычисляются в режиме Регрессия. Первоначально рассмотрим показатели, объединенные названием Регрессионная статистика (см. рис. 3.3).

Множественный - корень квадратный из коэффициента детерминации.

квадрат – коэффициент детерминации .

Рис. 3.3. Результаты работы режима Регрессия

Нормированный квадрат – приведенный коэффициент детерминации (см. формулу (2.1)).

Стандартная ошибка – оценка для среднеквадратического отклонения .

Наблюдения – число наблюдений .

Спектральный анализ (Spectral analysis)

Спектральный анализ - это широкий класс методов обработки данных, в основе которых лежит их частотное представление , или спектр. Спектр получается в результате разложения исходной функции, зависящей от времени (временной ряд) или пространственных координат (например, изображения), в базис некоторой периодической функции. Наиболее часто для спектральной обработки используется спектр Фурье, получаемый на основе базиса синуса (разложение Фурье, преобразование Фурье).

Основной смысл преобразования Фурье в том, что исходная непериодическая функция произвольной формы, которую невозможно описать аналитически и поэтому сложно обрабатывать и анализировать, представляется в виде набора синусов или косинусов с различной частотой, амплитудой и начальной фазой.

Иными словами, сложная функция преобразуется в множество более простых. Каждая синусоида (или косинусоида) с определенной частотой и амплитудой, полученная в результате разложения Фурье, называется спектральной составляющей или гармоникой . Спектральные составляющие образуют спектр Фурье .

Визуально спектр Фурье представляется в виде графика, на котором по горизонтальной оси откладывается круговая частота, обозначаемая греческой буквой «омега», а по вертикали – амплитуда спектральных составляющих, обычно обозначаемая латинской буквой A. Тогда каждая спектральная составляющая может быть представлена в виде отсчета, положение которого по горизонтали соответствует ее частоте, а высота – ее амплитуде. Гармоника с нулевой частотой называется постоянной составляющей (во временном представлении это прямая линия).

Даже простой визуальный анализ спектра может много сказать о характере функции, на основе которой он был получен. Интуитивно понятно, что быстрые изменения исходных данных порождают в спектре составляющие с высокой частотой, а медленные – с низкой . Поэтому если в нем амплитуда составляющих быстро убывает с увеличением частоты, то исходная функция (например, временной ряд) является плавной, а если в спектре присутствуют высокочастотные составляющие с большой амплитудой, то исходная функция будет содержать резкие колебания. Так, для временного ряда это может указывать на большую случайную составляющую, неустойчивость описываемых им процессов, наличие шумов в данных.

В основе спектральной обработки лежит манипулирование спектром. Действительно, если уменьшить (подавить) амплитуду высокочастотных составляющих, а затем на основе измененного спектра восстановить исходную функцию, выполнив обратное преобразование Фурье, то она станет более гладкой за счет удаления высокочастотной компоненты.

Для временного ряда, например, это означает убрать информацию об ежедневных продажах, которые сильно подвержены случайным факторам, и оставить более устойчивые тенденции, например, сезонность. Можно, наоборот, подавить составляющие с низкой частотой, что позволит убрать медленные изменения, а оставить только быстрые. В случае временного ряда это будет означать подавление сезонной компоненты.

Применяя спектр таким образом, можно добиваться желаемого изменения исходных данных. Наиболее часто используется сглаживание временных рядов путем удаления или уменьшения амплитуды высокочастотных составляющих в спектре.

Для манипуляций со спектрами используются фильтры – алгоритмы, способные управлять формой спектра, подавлять или усиливать его составляющие. Главным свойством любого фильтра является его амплитудно-частотная характеристика (АЧХ), от формы которой зависит преобразование спектра.

Если фильтр пропускает только спектральные составляющие с частотой ниже некоторой граничной частоты, то он называется фильтр нижних частот (ФНЧ), и с его помощью можно сглаживать данные, очищать их от шума и аномальных значений .

Если фильтр пропускает спектральные составляющие выше некоторой граничной частоты, то он называется фильтром верхних частот (ФВЧ). С его помощью можно подавлять медленные изменения, например, сезонность в рядах данных.

Кроме этого, используется множество других типов фильтров: фильтры средних частот, заградительные фильтры и полосовые фильтры, а также более сложные, которые применяются при обработке сигналов в радиоэлектронике. Подбирая тип и форму частотной характеристики фильтра, можно добиться желаемого преобразования исходных данных путем спектральной обработки.

Выполняя частотную фильтрацию данных с целью сглаживания и очистки от шума, необходимо правильно указать полосу пропускания ФНЧ. Если ее выбрать слишком большой, то степень сглаживания будет недостаточной, а шум будет подавлен не полностью. Если она будет слишком узкой, то вместе с шумом могут оказаться подавленными и изменения, несущие полезную информацию. Если в технических приложениях существуют строгие критерии для определения оптимальности характеристик фильтров, то в аналитических технологиях приходится использовать в основном экспериментальные методы.

Спектральный анализ является одним из наиболее эффективных и хорошо разработанных методов обработки данных. Частотная фильтрация – только одно из его многочисленных приложений. Кроме этого, он используется в корреляционном и статистическом анализе, синтезе сигналов и функций, построении моделей и т.д.

Метод анализа был основан на так называемых рядах Фурье. Ряд начинается с разложения сложной формы на простые. Фурье показал, что сложная форма волны может быть представлена как сумма простых волн. Как правило, уравнения, описывающие классические системы, легко решаются для каждой из этих простых волн. Далее Фурье показал, как эти простые решения можно суммировать, чтобы получить решение всей сложной задачи в целом. (Говоря языком математики, ряд Фурье - это метод представления функции суммой гармоник - синусоид и косинусоид, поэтому анализ Фурье был известен также под названием «гармонический анализ».)

Согласно гипотезе Фурье не существует функции, которую нельзя было бы разложить в тригонометрический ряд. Рассмотрим, каким образом можно провести данное разложение. Рассмотрим следующую систему ортонормированных функций на отрезка [–π, π]: {1, cos(t),
sin(t),
cos(2t),
sin(2t),
cos(3t),
sin(3t), …,
cos(nt),
sin(nt),… }.

Руководствуясь тем, что данная система функций является ортонормированной, функцию f(t) на отрезке [π, –π] можно аппроксимировать следующим образом:

f(t) = α0 + α1
cos(t) + α2
cos(2t) +
α3 cos(3t) + …

... + β1
sin(t) + β2
sin(2t) + β3
sin(3t)+… (6)

Коэффициенты α n , β n вычисляются через скалярное произведение функции и базисной функции по формулам, рассмотренным ранее, и выражаются следующим образом:

α 0 = , 1> =
,

α n = , cos(nt) > =
,

β n = , sin(nt) > =
.

Выражение (6) можно записать в сжатом виде следующим образом:

f(t) = a 0 /2 + a 1 cos(t) + a 2 cos(2t) + a 3 cos(3t) + …

B 1 sin(t) + b 2 sin(2t) + b 3 sin(3t)+… (7)

a 0 = 2α 0 =
,

а n =
α n =
, (8)

b n=
β n =
. (9)

Так как при n = 0 cos(0) = 1, константа a 0 /2 выражает общий вид коэффициента a n при n = 0.

Коэффициенты a n и b n называют коэффициентами Фурье, а представление функции f(t) по формуле (7) – разложением в ряд Фурье. Иногда разложение в ряд Фурье, представленное в таком виде, называют действительным разложением в ряд Фурье, а коэффициенты – действительными коэффициентами Фурье. Термин «действительный» вводится для, того чтобы отличить данное разложение от комплексного разложения.

Проанализируем выражения (8) и (9). Коэффициентa 0 представляет собой среднее значение функцииf(t) на отрезке [–π,π] или постоянную составляющую сигналаf(t). Коэффициентыa n иb n (приn> 0) – это амплитуды косинусных и синусных составляющих функции (сигнала)f(t) с угловой частотой равнойn. Другими словами, данные коэффициенты задают величину частотных составляющих сигналов. Например, когда мы говорим о звуковом сигнале с низкими частотами (например, звуки бас-гитары), это означает, что коэффициентыa n иb n больше при меньших значенияхnи наоборот – в высокочастотных звуковых колебаниях (например, звук скрипки) больше при больших значенияхn.

Колебание самого большого периода (или самой низкой частоты), представленное суммой a 1 cos(t) и b 1 sin(t) называют колебанием основной частоты или первой гармоникой. Колебание с периодом равным половине периода основной частоты – второй гармоникой, колебание с периодом равным 1/n основной частоты – n-гаромоникой. Таким образом, с помощью разложения Функции f(t) в ряд Фурье, мы можем осуществить переход из временной области в частотную. Такой переход обычно необходим для выявления особенностей сигнала, которые «незаметны» во временной области.

Обратим внимание, что формулы (8) и (9) применимы для периодического сигнала с периодом равным 2π. В общем случае в ряд Фурье можно разложить периодический сигнал с периодом T, тогда при разложении используется отрезок [–T/2, T/2]. Период первой гармоники равен T и составляющие примут вид cos(2πt/T) и sin(2πt/T), составляющие n-гармоники – cos(2πtn/T) и sin(2πtn/T).

Функцию f(t) на отрезке [–T/2,T/2] можно аппроксимировать следующим образом:

f(t) = a 0 /2 + a 1 cos(2πt/T) + a 2 cos(4πt/T) + a 3 cos(6πt/T) + …

B 1 sin(2πt/T) + b 2 sin(4πt/T) + b 3 sin(6πt/T)+…, (10)

a n =
,

b n=
.

Если обозначить угловую частоту первой гармоники ω 0 = 2π/T, тогда составляющие n-гармоники принимают вид cos(ω 0 nt), sin(ω 0 nt) и

f(t) = a 0 /2 + a 1 cos(ω 0 t) + a 2 cos(2ω 0 t) + a 3 cos(3ω 0 t) + …

B 1 sin(ω 0 t) + b 2 sin(2ω 0 t) + b 3 sin(3ω 0 t)+…=

=
, (11)

где коэффициенты Фурье вычисляются по формулам:

a n =
,

b n =
.

Если заметили ошибку, выделите фрагмент текста и нажмите Ctrl+Enter
ПОДЕЛИТЬСЯ: