Windows. Вирусы. Ноутбуки. Интернет. Office. Утилиты. Драйверы

В конфокальном микроскопе, благодаря пинхолу, проводится детекция флуоресценции в одном участке объекта, находящемся в фокусе, с минимальным влиянием флуоресценции окружающих участков за счет перестройки оптической системы в каждый момент времени . Такой способ позволяет значительно повысить разрешающую способность микроскопа по всем трём осям, и избежать засвечивания от подлежащих слоёв образца и слоёв лежащих над плоскостью наблюдения. В качестве источника света используется лазер. За объективной линзой находится небольшая диафрагма. Это нужно чтобы испускаемый свет, проходил через нее и регистрировался, а свет других точек, задерживался диафрагмой и лазер освещает не все поле зрения. В результате визуализация проводится в рамках одного оптического среза. В ходе работы проводится съёмка серии оптических срезов образца или перестройки, на основании чего можно получить его трёхмерную реконструкцию . Однако необходимость сканирования множества участков замедляет процесс работы, и конфокальный микроскоп может получить всего несколько изображений в секунду . Ещё одним фактором, замедляющим работу конфокальных микроскопов, является переход от одного оптического среза к следующему. Сканирующие конфокальные микроскопы, как правило, основаны на следующем принципе: образец фиксируется на определённом уровне, изображение считывается под контролем гальванометрического сканера, затем образец перемещается по вертикальной оси и процедура повторяется . Ускорить процесс сканирования можно сократив затраты времени на каждую точку, однако это снижает чувствительность метода и соотношение сигнал/шум. Скорректировать падение чувствительности можно было бы путём повышения интенсивности освещения, но в этом случае возможно повреждение образца светом и его обесцвечивание .

В системе конфокальной микроскопии единичный пинхол системы заменяется множеством пинхолов, обеспечивающих освещение и получение изображений многих точек образца единовременно. Эти пинхолы расположены на вращающемся по спирали, обеспечивая, в итоге, равномерное освещение образца . Чтобы между отверстиями не происходило засвечивания, они должны находиться на расстоянии, равном десяти их диаметрам, друг от друга . С помощью подобных систем можно получить изображение препарата гораздо быстрее - за одну секунду конфокальные микроскопы на основе системы позволяют получать десятки и сотни изображений.

Конфокальная микроскопия сочетает возможность наблюдения тонких оптических срезов, с высокой чувствительностью флуоресцентной микроскопии. Метод хорошо подходит для исследований динамики цитоскелета, движения везикул и органелл, и других задач, связанных с прижизненным наблюдением клеток. Он является более щадящим по отношению к живым клеткам благодаря тому, что продолжительность освещения каждого участка образца значительно сокращается по сравнению обычным конфокальным микроскопом. Систему можно собрать как на прямом, так и на инвертированном микроскопе, но, всё же, предпочтительно использовать инвертированный , поскольку такой дизайн микроскопа позволяет исследовать живые объекты и культуры клеток.

Для съёмки изображений, получаемых путём микроскопии, может использоваться конфокальный микроскоп c камерой ПЗС, а не детекторы на основе фотоумножителей. Детекция с использованием фотоумножителя позволяет значительно усилить сигнал, но создаёт дополнительные шумы. Охлаждаемые ПЗС-камеры микроскопа, напротив, позволяют получать прижизненные изображения крупного формата, с меньшим количеством шумов .

Двойная система был предложен компанией Yokogawa Electric Corporation. Вторая фокусирующая система при этом расположена так, чтобы встроенные в него линзы располагались перед отверстиями на первом, он осуществляет фокусирование света. Сейчас это наиболее распространённые системы для сборки конфокальных микроскопов. Размер используемых в них пинхолов фиксирован, он оптимален 100× увеличения. Пинхолы систем Yokogawa имеют диаметр 50 мкм, через каждый из них может быть получено изображение фрагмента оптического среза диаметром 500 нм. Синхронизация скорости и длительности съёмки определяет качество изображения .

При использовании эффекта полного внутреннего отражения (TIRF) конфокального микроскопа можно получить сведения о процессах, происходящих в тонком поверхностном слое образца, например, непосредственно под мембраной. Для этого используется рассеяние небольшого количества света в виде затухающей волны при полном внутреннем отражении лазерного луча на границе раздела сред. Система, работающая на данном принципе, может быть объединена с системой в составе одного конфокального микроскопа. Для переключения между режимами необходима турель, удаляющая фильтры при микроскопии с использованием системы переключения между камерами. Методики активного освещения - фотообесцвечивание, фотоактивация и фотоконверсия флуорохромов, предназначены для исследования динамических процессов в клетке. Они могут быть реализованы на микроскопе, оснащённом данной системой лазерной сканирующей микроскопии, с использованием отдельных источников света. В сканирующих конфокальных системах фотообесцвечивание проводится с помощью того же лазера, что и получение изображения за счёт изменения его интенсивности, в результате одновременно проводить эти процедуры нельзя, что затрудняет исследование молекул с высокой подвижностью . Для качественной обработки полученных изображений требуются большие вычислительные мощности компьютера. Производители медицинского оборудования выпускают новейшие образцы данного вида оборудования, которые разделяют лазерный луч возбуждения и люминесценцию. Оборудование получило широкое применение в области биофизики, медицины, молекулярной и клеточной биологии.

Таким образом, спиннинг диск конфокальная микроскопия - представляет собой экономичный и точный способ исследования биологического материала с высоким разрешением, во многом заменяющий конфокальную микроскопию, прежде всего при решении задач, связанных с наблюдениями за живыми объектами. Развитие метода и разработки компании Andor позволили создать конфокальные системы, позволяющие работать без использования лазерных источников света, что снизило стоимость оборудования для исследований подобного класса.

  1. Wilson T. Spinning-disk microscopy systems / Cold Spring Harb Protoc. 2010. - 2010. - V.11.
  2. Thorn K. Spinning-disk confocal microscopy of yeast / Methods Enzymol.- 2010. V. 470.- P.581-602.
  3. Winter PW, Shroff H. Faster fluorescence microscopy: advances in high speed biological imaging / Curr Opin Chem Biol. - 2014. - V.20. - P. 46-53.
  4. Stehbens S, Pemble H, Murrow L et al. Imaging intracellular protein dynamics by spinning disk confocal microscopy. Methods Enzymol. - 2012. - V.504. - P.293-313.

Конфокальный микроскоп Nikon. Изображение дендритной клетки, выделенной из костного мозга, экспрессирующей химерный белок MHC II -GFP (5 мкм). Vyas JM . Insights into dendritic cell function using advanced imaging modalities / Virulence. - 2012. - V.3, N.7. - P. 690-694. Конфокальная микроскопия

Прижизненное изображение распределения нейтрофилов в эмбрионе D. rerio. A,B - конфокальная микроскопия, C, D. Lam PY1, Fischer RS, Shin WD, Waterman CM, Huttenlocher A. Spinning disk confocal imaging of neutrophil migration in zebrafish / Methods Mol Biol. - 2014. - V.1124. - P.219-33.

Обычные классические микроскопы не всегда эффективны при проведении сложных исследований. Если для наблюдения крупных объектов их качеств бывает достаточно, то для исследования клеток они дают искажения. Конфокальные приборы лишены многих недостатков обычного микроскопа. В них есть важный элемент - диафрагма, - который отсекает поток фонового рассеянного света.

Каждую единицу времени регистрируется изображение только от одной точки объекта. Это реализуется за счет диафрагмы микроскопа, расположенной за линзой объектива. Она пропускает свет от одной точки, а свет от других точек задерживается. В следующий момент времени оптическая конфокальная система перестраивается (либо перемещается образец), и в диафрагму попадает свет от другой точки. Затем эти точки складываются в единую картину.

Лазером освещается не весь образец, а только определенная его точка, свет от которой и попадает в диафрагму. Соседние области становятся вторичными источниками света, однако диафрагма их отсекает. Регулируя диаметр диафрагмы, наблюдатель может точно устанавливать толщину оптического слоя у фокуса лазерного луча. Тем самым обеспечивается более качественное изображение по оси Z, что является проблемой для многих обычных микроскопов.

Управляет оптической системой компьютер. Наблюдателю не нужно смотреть в окуляр: изображение обрабатывается программой и выводится на экран монитора. Очень важно правильно установливать микроскопы, так как они чувствительны к вибрациям. Для удобства работы и передачи информации, компьютер микроскопа оснащается USB-портами и возможностью подключения к локальной сети и Интернет. Жесткий диск должен быть вместительным, чтобы хранить большое количество информации.

Основная концепция

Конфокальный принцип точка датчика из патента Минсков

Принцип конфокальной микроскопии был запатентован в 1957 году Марвин Мински и стремится преодолеть некоторые ограничения традиционных широкоугольных микроскопов флуоресценции . В обычном (т.е. широкого поля) флуоресцентный микроскоп , весь образец затопляются равномерно свет от источника света. Все части образца в оптическом пути возбуждаются в то же время и в результате флуоресценции детектируют с помощью микроскопа фотодетектора или камер , включая большую несфокусированный фон часть. В противоположность этому, конфокальный микроскоп использует точку подсветки (см функция рассеяния точки) и крошечное отверстие в оптически сопряженной плоскости в передней части детектора, чтобы исключить из фокуса сигнала - название «конфокальной» происходит от этой конфигурации. Как только свет, излучаемый с помощью флуоресценции очень близко к фокальной плоскости можно обнаружить, изображение в оптическом разрешении , в частности, в направлении глубины образца, гораздо лучше, чем у широкого поле микроскопов. Тем не менее, так как большая часть света от образца флуоресценции блокируется на прокол, это повышенное разрешение за счет уменьшенной интенсивности сигнала - так долго воздействия часто требуются. Чтобы компенсировать это падение сигнала после того, как прокол , интенсивность света обнаруживается с помощью чувствительного детектора, как правило, фотоэлектронный умножитель (ФЭУ) или лавинным фотодиодом , превращая светового сигнала в электрический, который записывается с помощью компьютера.

Как только одна точка в образце освещена в то время, 2D или 3D изображений требуется сканирование над регулярной растра (т.е., прямоугольный шаблон параллельных линий сканирования) в образце. Луч сканируют поперек образца в горизонтальной плоскости с помощью одного или более (серво контролируется) осциллирующие зеркала. Этот метод сканирования, как правило, имеет низкую реакционную задержку и скорость сканирования может изменяться. Медленное сканирование обеспечивают лучшее отношение сигнал-шум , что приводит к лучшей контрастности и более высоким разрешением.

Достижима толщина фокальной плоскости определяется главным образом от длины волны используемого света, деленной на числовой апертуры этого объектива , но и оптических свойств образца. Тонкие оптические секционирования возможно делают эти типы микроскопов особенно хороши в 3D визуализации и профилировании поверхности образцов.

Последовательные срезы составляют «Z-стек», который может быть либо обработан определенным программным обеспечением для создания 3D-изображения, или он объединяется в 2D стеку (преимущественно максимальная интенсивность пикселя берутся, другие общие методы включают использование стандартного отклонения или суммирования пикселей).

Конфокальная микроскопия обеспечивает емкость для прямого, неинвазивного, серийного оптического секционирования интактных, толстых и живых особей с минимумом подготовки проб, а также незначительным улучшением в боковом разрешении. Биологические образцы часто обрабатывает флуоресцентные красители , чтобы сделать выбранные объекты видимыми. Однако, фактическая концентрация красителя может быть низкой, чтобы свести к минимуму нарушения биологических систем: некоторые инструменты могут отслеживать отдельные молекулы флуоресцентных. Кроме того, трансгенные методы могут создавать организмы, которые производят свои собственные флуоресцентные молекулы химерных (такие как сплав GFP, зеленого флуоресцентного белка с представляющим интерес белком). Конфокальные микроскопы работают по принципу точечного возбуждения в образце (дифракции ограничено точечные) и обнаружение точки результирующего сигнала флуоресцентного. Обскуры на детекторе обеспечивает физический барьер, который блокирует вне фокуса флуоресценции. Только в фокусе, или центрального пятна диска Эйри, записывается. Растровое сканирование образца в одной точке, в то время допускает тонкие оптические участки должны быть собраны путем простого изменения Z-фокус. Полученные изображения могут быть сложены, чтобы произвести 3D - изображение образца.

Методы, используемые для горизонтального сканирования

Четыре типа конфокальных микроскопов являются коммерчески доступным:

Конфокальные лазерные сканирующие микроскопы использовать несколько зеркала (обычно 2 или 3 сканирований линейно вдоль осей х и у-ось) для сканирования лазера на образец и «descan» изображения через фиксированную обскуру и детектор.

Пользы

CLSM широко используется во многих биологических научных дисциплин, от клеточной биологии и генетики в области микробиологии и биологии развития . Он также используется в квантовой оптики и нано-кристаллической визуализации и спектроскопии.

Биологии и медицины

Пример стопки конфокальной микроскопии изображений, показывающих распределение актиновых филаментов по всей клетке.

Клинический, КЛСМ используется при оценке различных глазных заболеваний, и особенно полезно для получения изображений, качественного анализа и количественной оценки эндотелиальных клеток в роговице . Он используется для локализации и идентификации присутствия нитевидных элементов грибов в роговичной стромы в случаях keratomycosis , что позволяет быстро поставить диагноз и тем самым раннее учреждение окончательной терапии. Исследование методов CLSM для эндоскопических процедур (эндомикроскопия) также показывает обещание. В фармацевтической промышленности, было рекомендовано, чтобы следить за процессом изготовления тонких фармацевтических форм пленки, чтобы контролировать качество и однородность распределения лекарственного средства.

Оптика и кристаллография

CLSM используется в качестве механизма поиска данных в некоторых оптическом хранении данных 3D - системах и помог определить возраст папируса Магдалины .

Варианты и усовершенствование

Улучшение осевого разрешения

Точка распространение функция точечного эллипсоид, несколько раз до тех пор, как это широко. Это ограничивает осевое разрешение микроскопа. Один из методов преодоления этого 4 π микроскопии , где падающий и излучаемый свет или могут мешать как сверху, так и снизу образца, чтобы уменьшить объем эллипсоида. Альтернативная методика конфокальной микроскопии тета . В этой технике конус осветительного света и детектируемый свет расположен под углом друг к другу (наилучшим результатам, когда они перпендикулярны). Пересечение двух форы функций дает гораздо меньший эффективный объем образца. Из этого эволюционировали одного самолета подсветки микроскопа . Дополнительно деконволюции могут быть использованы с использованием экспериментально полученной функции рассеяния точки , чтобы удалить из фокуса света, улучшая контраст в обеих осевых и боковых плоскостях.

Супер разрешение

Есть конфокальной варианты, которые достигают разрешения ниже дифракционного предела, такие как стимулированной эмиссии обедненной микроскопии (STED). Кроме этой техники широкое разнообразие других методов (не конфокальной основе) супер-разрешением доступны как пальмовое, (д) ШТОРМОВАЯ, SIM - карты, и так далее. Все они имеют свои преимущества, такие как простота использования, разрешение и необходимость специального оборудования, буфера или флуорофору.

Низкотемпературный Работоспособность

Для образцов изображений при низких температурах, два основных подхода были использованы, как на основе лазерной сканирующей конфокальной микроскопии архитектуры. Один из подходов заключается в использовании непрерывного потока криостат : только образец находится при низкой температуре и ее оптической адресацией через прозрачное окно. Другой возможный подход заключается в части оптики (особенно объективного микроскопа) в криогенном сосуде Дьюара для хранения . Этот второй подход, хотя и более громоздким, гарантирует лучшую механическую стабильность и позволяет избежать потерь из - за окна.

Изображений

    Частичный профиль поверхности монеты 1-Евро, измеренная с помощью диска Нипкова конфокальной микроскопии.

    Отражение данных для 1-монеты евро.

история

Начало: 1940-1957

Первый конфокальный сканирующий микроскоп был построен Marvin Минсков в 1955 и патент была подана в 1957 году сканирование точки освещения в фокальной плоскости была достигнута путем перемещения стадии. Ни одно научное издание представлено не было, и никакие изображения, сделанные с ним не были сохранены.

Тандем-сканирующий микроскоп

Схема Тандем-сканирующей микроскопии Petran в. Красный бар добавлен, чтобы указать Нипкова-диск.

В 1960 году чехословацкий Моймир Petran медицинский факультет Карлова университета в Пльзене разработала Тандем сканирующая микроскоп, первый Коммерциализированный конфокальной микроскопии. Он был продан небольшой компании в Чехословакии и в Соединенных Штатах Tracor-Северной (позже NORAN) и используется вращающийся диск Нипкова , чтобы генерировать множественные возбуждения и эмиссии микроотверстий.

Патент чехословацкий был подан в 1966 году по Petran и Милан Hadravský, чехословацкого коллеги. Первая научная публикация с данными и изображениями, полученных с этим микроскопом была опубликована в журнале Science в 1967 году, автором которого является М. Дэвид Эггер из Йельского университета и Petran. В примечании к этой статье упоминается, что Petran разработан микроскоп и руководил его строительством, и что он был, частично, «научный сотрудник» в Йельском университете. Второе издание с 1968 описал теорию и технические детали прибора и имел Hadravský и Роберт Галамбос , руководитель группы в Йельском университете, в качестве дополнительных авторов. В 1970 году был выдан патент США. Он был подан в 1967 году.

1969: Первый конфокальной лазерной сканирующей микроскопии

В 1969 и 1971 годах, М. Дэвид Egger и Пол Davidovits из Йельского университета , опубликовал две статьи, описывающие первый конфокальной лазерной сканирующей микроскопии. Это была точка сканера, то есть только один освещение пятна был сгенерирован. Он используется эпи-освещение-отражение микроскопии для наблюдения нервной ткани. В 5 мВт гелий-неоновый лазер с длиной волны 633 нм свет отражался от полупрозрачного зеркала в направлении цели. Цель была простой объектив с фокусным расстоянием 8,5 мм. В отличии от всех предыдущих и наиболее поздних систем, образец сканировали движением этой линзы (цель сканирования), что приводит к перемещению фокальной точки. Отраженный свет вернулся к полупрозрачный зеркалу, передаваемая часть была ориентирована другой линза на точечным обнаружение, за которой фотоэлектронный умножитель был помещен. Сигнал визуализировали с помощью ЭЛТ осциллографа, электронно - лучевой был перенесен одновременно с целью. Специальное устройство позволило сделать Polaroid фотографии , три из которых были показаны в 1971 публикации.

Авторы размышляют о флуоресцентных красителях для исследований в естественных условиях. Они ссылаются на патент Минского, спасибо Стив Бэра, в то время докторант в Альберта Эйнштейна школы медицины в Нью - Йорке , где он разработал конфокальной линии сканирующего микроскопа, предложившего использовать лазер с «микроскопом Мински» и поблагодарить Галамбос, Hadravsky и Petran для дискуссий, ведущих к развитию своего микроскопа. Мотивация для их развития было то, что в Tandem-сканирующей микроскопии только фракция 10 -7 освещающего света участвует в генерации изображения в части глаза. Таким образом, качество изображения не было достаточным для большинства биологических исследований.

1977-1985: Точечные сканеры с лазерами и сканирования сцены

В 1977 году Колин JR Sheppard и Tony Wilson описал конфокальной с эпи-лазера-подсветкой, сканирование стадии и фотоэлектронных умножителей как детекторы. Этап мог перемещаться вдоль оптической оси (Z-ось), что позволяет оптические серийные срезы.

В 1979 году Фред Brakenhoff и его коллеги показали, что теоретические преимущества оптического секционирования и улучшения разрешения действительно достижимо на практике. В 1985 году эта группа стала первой публиковать убедительные снимки, сделанные на конфокальной микроскопии, которые были в состоянии ответить на биологические вопросы. Вскоре после того, как много больше групп начали использовать конфокальной микроскопии, чтобы ответить на научные вопросы, которые до сих пор осталось загадкой из - за технологических ограничений.

В 1983 IJ Cox унд С. Шеппард из Оксфорда опубликовал первую работу в соответствии с которым конфокальный микроскоп, управляемый компьютером. Первый коммерческий лазерный сканирующий микроскоп, этап-сканер SOM-25 был предложен Oxford оптоэлектроники (после нескольких TAKE-кадром, приобретенных BioRad), начиная с 1982 г. Она была основана на конструкции группы Oxford.

Начиная с 1985: Лазерная точка сканеры с сканированием луча

В середине 1980-х годов, Уильям Брэдшоу Амоса и Джона Грэма Уайта и его коллег, работающих в лаборатории молекулярной биологии в Кембридже была построена первая конфокальной луча сканирующего микроскопа. Стадии с образцом не движется, вместо того, чтобы освещенность пятно, что позволяет быстрее получения изображений: четыре изображения в секунду с 512 строк каждая. Сильно преувеличены промежуточные изображения, из - за путем луча длиной 1-2 метров, допускается использование обычной ирисовой диафрагмы как «обскура», с диаметром ~ 1 мм. Первые микрофотографии были приняты при длительном воздействии на пленку, прежде чем был добавлен цифровой фотоаппарат. Дальнейшее усовершенствование позволило масштабирование в подготовку в первый раз. Цейсс примерно в то же время привели к коммерческому CLSM распространяемого шведской компании Зарастро~d. Предприятие было приобретено в 1990 году молекулярной динамики, но в конце концов CLSM прекращено. В Германии, Heidelberg Instruments , основанная в 1984 году, разработал КЛСМ, который был первоначально означало для промышленного применения, а не биологии. Этот документ был передан в 1990 году Leica Lasertechnik . Цейсс уже не-конфокальной летающего пятна лазерного сканирующего микроскопа на рынке, который был повышен до конфокальной. В докладе 1990 года, отметив, «некоторые» производитель confocals списков: Sarastro, технический инструмент, Meridian Instruments, Bio-Rad, Leica, Tracor-северного и Цейс.

В 1989 году Фриц Карл Preikschat , с сыном Ekhard Preikschat, изобрел сканирующий лазерный диод микроскоп для анализа размера частиц. Он и Ekhard Preikschat соучредителем Lasentec коммерциализировать. В 2001 году Lasentec был приобретен Mettler Toledo (NYSE: МПД). Около десяти тысяч систем были установлены по всему миру, в основном в фармацевтической промышленности для обеспечения контроля в месте процесса кристаллизации в больших системах очистки.

  • Двухфотонное возбуждение микроскопия : Несмотря на то, что они используют соответствующую технологию (оба лазерные сканирующие микроскопы), многофотонные флуоресцентные микроскопы не являются строго конфокальными микроскопами. Термин конфокальной возникает из - за наличия диафрагмы в конъюгированной фокальной плоскости (конфокального). Эта диафрагма обычно отсутствует в многофотонных микроскопах.
  • Полное внутреннее отражение флуоресцентный микроскоп (TIRF) о
    конфокальной микроскопии
    • Виртуальный CLSM (Java-основе)
    • анимация и разъяснение по различным типам микроскопов, включая флуоресцентные и конфокальные микроскопы . (Université Paris Sud)

Оптическая микроскопия также интенсивно развивается с использованием новейших достижений техники, информационных и компьютерных технологий. Это приводит к усовершенствованию имеющейся аппаратуры и методик ее применения, что обусловливает появление новых методов, в частности конфокальной микроскопии.

Конфокальный микроскоп отличается от «классического» оптического прибора тем, что в каждый момент времени регистрируется изображение одной точки объекта, а полноценная картина строится путем сканирования (движения образца или перестройки оптической системы). Таким образом, в своеобразной форме реализуется принцип растровой электронной микроскопии, что позволяет сколь угодно долго регистрировать и обрабатывать сигнал с каждой отдельно взятой точки.

В обычном микроскопе в фотоприемное устройство свет попадает одновременно из различных точек образца. В конфокальном микроскопе, для того чтобы регистрировать свет только от одной точки, после объективной линзы располагается диафрагма малого размера таким образом, что свет, испускаемый анализируемой точкой, проходит через диафрагму и регистрируется, а свет от остальных точек задерживается диафрагмой, как это показано на рис. 15.31.

Рис. 15.31

Еще одна особенность состоит в том, что осветитель создает не равномерную освещенность поля зрения, а фокусирует свет в окрестностях анализируемой точки. Это может достигаться расположением второй фокусирующей системы за образцом, но при этом требуется, чтобы образец был прозрачным. Кроме того, объективные линзы обычно дорогие, поэтому использование второй фокусирующей системы для подсветки не всегда обосновано. Альтернативой является применение светоделительной пластинки, гак чтобы и падающий и отраженный свет фокусировались одним объективом. Такая схема к тому же облегчает юстировку.

Рассмотрим теперь математическую модель количественной оценки изменения контрастности при применении конфокальной микроскопии. Поскольку в конфокальном микроскопе свет дважды проходит через объектив, то функция размытия точки представляет собой произведение независимых вероятностей того, что фотон попадет в точку с ее координатами, и что фотон, вышедший из этой точки, будет зарегистрирован.

В соответствии с критерием Рэлея для разрешения получается, что разрешение в конфокальном микроскопе увеличивается, но несущественно. Для конфокального микроскопа имеем выражение для разрешения г

В то время как для обычного микроскопа

где А." = Х/п; п - коэффициент преломления; 0 - апертурный угол; D - диаметр апертуры; F- фокусное расстояние.

Основное достоинство конфокального микроскопа - не увеличение разрешения (в смысле критерия Рэлея), а существенное повышение контрастности. Тусклый объект с интенсивностью, к примеру, в 200 раз меньшей, чем у яркого, в обычный микроскоп не виден, хотя расстояние между объектами может быть намного больше того, что предписано критерием Рэлея. Напротив, конфокальный микроскоп такой объект должен зарегистрировать.

Важным параметром является размер диафрагм в фокальной плоскости облучающей и собирающей линз. Изображение диафрагмы в плоскости объекта определяет, свет из каких областей регистрируется фотодетектором. Очевидно, однако, что уменьшение размера диафрагмы приводит к уменьшению количества проходящего света, снижает отношение сиг- нал/шум и, в конечном итоге, может свести на нет все достигнутые преимущества по контрастности. Таким образом, стоит вопрос об оптимальном выборе размера диафрагмы и разумном компромиссе.

Диафрагма с отверстием меньше размера пятна Эйри просто приводит к потере интенсивности и никак не влияет на разрешение. Диафрагма размером в одно пятно Эйри позволяет по максимуму использовать разрешающую способность объективной линзы. Но размер диафрагмы, примерно в 3-5 раза больший пятна Эйри, представляется наиболее подходящим. Следует понимать, что обсуждаемый здесь размер имеет смысл размера изображения в плоскости объекта, а поэтому реальный размер отверстия в диафрагме зависит от увеличения линзы. В частности, при использовании 100-кратной линзы диафрагма с отверстием 1 мм будет спроецирована в плоскость объекта в круг радиусом 10 мкм.

Развитием идеи конфокальной микроскопии явилась разработка конфокального лазерного сканирующего микроскопа (КЛСМ), что было вызвано потребностью в более чувствительных и метрологически строгих средствах анализа формы и пространственной структуры наблюдаемых объектов. Схема КЛСМ с основными функциональными связями показана на рис. 15.32.

Рис. 15.32. 1 - координатный столик; 2- исследуемый образец;

3,6 - объективы; 4 - сканирующее устройство; 5 - светоделительная пластина; 7, 9- игольчатые диафрагмы; 8- приемник излучения; 10 - лазер; 11 - блок управления; 12 - компьютер; 13 - привод для сканирования по оси Z

Особенность КЛСМ заключается в возможности послойного изображения исследуемого объекта с высоким разрешением и низким уровнем шумов. Достигается это путем пошагового сканирования объекта сфокусированным пучком света от когерентного источника или с использованием столика со специальными флуоресцентными зондами, а также особыми методами ограничения световых потоков.

Разрешение КЛСМ определяется как оптической системой, так и электронным трактом обработки информации. Поэтому в конструкции КЛСМ, его схемах должны быть согласованы такие параметры, как разрешение оптической системы, шаг сканирования, характеристики детектора, а кроме того, выбраны оптимальные алгоритмы обработки и соответствующее программное обеспечение.

В общем случае глубина резкости КЛСМ зависит от апертуры, длины волны, когерентности источников света и размеров игольчатой диафрагмы. Игольчатая диафрагма (ИД) является основным элементом конструкции, отличающим КЛСМ от других типов микроскопов. Игольчатые диафрагмы предназначены для создания условий максимальной или полной фильтрации света, попадающего в плоскость формирования изображения от точек, которые не совпадают с фокальной плоскостью или находятся рядом с анализируемым элементом объекта в фокальной плоскости.

Выбор оптимального диаметра ИД важен для получения требуемых характеристик прибора. Соотношения для оценки латерального разрешения и глубины резкости КЛСМ получаются в предположении, что ИД имеет малое отверстие, являясь светящейся точкой. Реально размер ИД конечен, и от него зависят поперечное разрешение прибора, яркость освещенных элементов препарата, смещенных относительно фокальной плоскости по оси Z, и глубина резкости.

При небольшом диаметре ИД световой поток становится малым, что уменьшает отношение сигнал/шум и снижает контрастность. При большом диаметре эффективность диафрагмы снижается за счет уменьшения апертуры.

Конфокальная микроскопия - один из современных методов исследования; позволяет проводить прижизненный мониторинг состояния роговицы с визуализацией тканей на клеточном и микроструктурном уровне.

Данный метод в силу оригинальной конструкции микроскопа и его большой разрешающей способности позволяет визуализировать живые ткани роговицы, измерить толщину каждого из её слоён, а также оценить степень морфологических нарушений.

Охарактеризовать морфологические изменения роговицы, возникающие при различных воспалительных и дистрофических её заболеваниях, а также вследствие хирургических вмешательств и воздействия КЛ.

Данные морфологического исследования необходимы, чтобы оценить тяжесть патологического процесса, эффективность лечения и определить тактику ведения больного.

Показания

Воспалительные заболевания роговицы (кератиты).
Дистрофические заболевания роговицы (кератоконус, дистрофия Фукса и др.).
Синдром «сухого глаза».
Состояния после хирургических вмешательств на роговице(сквозной пересадки роговицы, кераторефракционных операций).
Состояния, связанные с ношением КЛ.

Противопоказания

Относительное противопоказание выраженное раздражение глаза на фоне острого воспалительного процесса.

Подготовка


Проведение данного исследования
возможно без применения анестетиков. На объектив линзы конфокального микроскопа помещают каплю иммерсионной жидкости. Это исключает непосредственный контакт линзы с роговицей и сводит к минимуму риск повреждения эпителия.

Методика

Исследование выполняют на конфокальном микроскопе ConfoScan 4 (Nider) с увеличением в 500 раз. Прибор позволяет осмотреть роговицу по всей её толщине.

Размер исследуемой зоны составляет 440x330 мкм, толщина слоя сканирования - 5 мкм. Линзу с каплей геля подводят к роговице до касания и устанавливают так. чтобы толщина слоя иммерсионной жидкости составляла 2 мм. Конструкция прибора позволяет исследовать роговицу в центральной зоне и её парацентральных участках (рис. 7-1; рис. 7-2.).


Интерпретация

Нормальная морфологическая картина роговицы

Передний эпителий состоит из 5-6 слоев клеток. Средняя толщина всего эпителия - приблизительно 50 мкм. По морфологической структуре выделяют следующие слои (изнутри кнаружи): банальный, шиловидных клеток и поверхностный.

Самый внутренний (базальный) слой представлен маленькими плотными цилиндрическими клетками без видимого ядра. Границы базальных клеток чёткие, яркие (рис. 7-3).

Средний слой состоит из 2-3 пластов шиповидных (крылатых) клеток с глубокими инвагинациями, в которые встраиваются выросты соседних клеток. Микроскопически границы клеток довольно хорошо различимы, а ядра могут не определяться или быть нечёткими (рис. 7-4).

Поверхностный слой эпителия представлен одним или двумя пластами полигональных клеток с чёткими границами и гомогенной плотностью. Ядра обычно ярче, чем цитоплазма, в которой также можно различить околоядерное тёмное кольцо (рис. 7-5).

Среди клеток поверхностного слоя различают тёмные и светлые. Повышенная отражательная способность эпителиальных клеток свидетельствует о снижении в них уровня метаболизма и начинающейся их десквамации.

Боуменова мембрана прозрачная структура, не отражающая свет, поэтому в норме при конфокальной микроскопии её визуализация невозможна.

Суббазальное нервное сплетение находится под боуменовой мембраной. В норме нервные волокна выглядят как параллельно идущие на тёмном фоне яркие полосы, контактирующие между собой. Рефлективность (отражательная способность) может быть неравномерной по протяжению волокна (рис. 7-6).

Строма роговицы занимает от 80 до 90% толщины роговицы и состоит из клеточного и внеклеточного компонента. Основные клеточные элементы стромы- кератоциты; составляют примерно 5% объёма.

Типичная микроскопическая картина стромы включает несколько ярких неправильной овальной формы тел (ядер кератоцитов), которые лежат в толще прозрачного тёмно-серого или чёрного матрикса. В норме визуализация внеклеточных структур невозможна из-за их прозрачности. Строма может быть условно разделена на субслои: передний (расположен непосредственно под боуменовой мембраной и составляет 10% толщины стромы), переднесредний, средний и задний.

Средняя плотность кератоцитов выше в передней строме, постепенно их количество уменьшается по направлению к задним слоям. Плотность клеток передней стромы почти в два раза больше, чем клеток задней стромы (если плотность клеток передней стромы принять за 100%, то плотность клеток задней составит около 53,7%). В передней строме ядра кератоцитов имеют округлую бобовидную форму, а в задней овальную и более вытянутую (рис. 7-7.7-8).


Ядра кератоцитов могут различаться по яркости. Различная способность отражать свет зависит от их метаболического состояния. Более яркие клетки принято считать активированными кератоцитами («стрессовыми» клетками), деятельность которых направлена на поддержание внутреннего гомеостаза роговицы. В норме и поле зрения встречаются единичные активированные клетки (рис. 7-9).

Нервные волокна в передней строме роговицы визуализируются в виде ярких гомогенных полос, нередко образующих бифуркации (рис. 7-10).

Десцеметова мембрана в норме прозрачна и не визуализируется при конфокальной микроскопии.

Задний эпителий представляет собой монослой гексагональных или полигональных плоских клеток с равномерно светлой поверхностью на фоне чётких тёмных межклеточных границ (рис. 7-11).

В приборе заложена возможность мануального или автоматического подсчёта плотности клеток, их площади и коэффициента вариабельности.

Патологические изменения строения роговицы

Кератоконус характеризуется значительными изменениями в переднем эпителии и строме роговицы.

Передний эпителий. Обнаруживают различные варианты эпителиопатии (рис. 7-12).

Люминесцентная, или флюоресцентная, микроскопия - метод гистологического анализа с помощью люминесцентного микроскопа, в котором используется явление люминесценции (свечения) веществ при действии на них коротковолновых лучей (ультрафиолетового света, рентгеновских лучей). Некоторые биологические соединения, присутствующие в клетках, характеризуются спонтанной флюоресценцией при попадании на клетку ультрафиолетовых лучей. Для выявления же большинства других соединений клетки обрабатываются специальными флюорохромами (флюо-ресцеином, акридином оранжевым, корифосфином). С помощью флюорохромов исследуют, например, содержание в клетках нуклеиновых кислот. При окраске акридином ДНК дает красно-зеленое свечение, а РНК - оранжевое.

Люминесцентный микроскоп широко используется также для изучения иммунофлюоресценции. Иммунофлюоресценция позволяет исследовать в клетке содержание очень малых количеств белка. Препарат предварительно обрабатывают антителами к исследуемому белку, меченными флюоресцирующим красителем.

Ультрафиолетовая микроскопия - метод изучения клеток с помощью микроскопов, в которых для освещения объекта используют ультрафиолетовые лучи (длина волны которых равна 210-275 нм). Такие микроскопы имеют большую, чем обычные световые микроскопы, разрешающую способность. Для наблюдения за объектом требуется специальная аппаратура - электронно-оптический преобразователь, который предохраняет орган зрения от действия ультрафиолетовых лучей.

Электронная микроскопия . В электронных микроскопах используют пучок электронов, длина электромагнитной волны которых в 100 000 раз короче длины волны видимого света. Разрешающая способность электронного микроскопа в сотни и тысячи раз превышает обычные оптические приборы и равна 0,5-1 нм, а современные мегавольтные электронные микроскопы дают увеличение до 1 000 000 раз. С помощью электронных микроскопов получены многочисленные данные об ультраструктуре клеток. Разновидностью электронной микроскопии является сканирующая электронная микроскопия (СЭМ), при которой изучаются поверхностные структуры клеток.

Цитоспектрофотометрия - метод изучения химического состава клетки, основанный на избирательном поглощении теми или иными веществами лучей с определенной длиной волны. По интенсивности поглощения света, которая зависит от концентрации вещества, производится количественное определения его содержания в клетке.

Радиоавтография - важный информативный метод, позволяющий изучать распределение в клетках и тканях веществ, в состав которых искусственно введены радиоактивные изотопы (3Н, НС, 32Р и др.). Введенный в организм животного (или в среду культивирования клеток) изотоп включается в соответствующие структуры (например, меченый тимидин - в ядра клеток, синтезирующих ДНК). Метод основан на способности включенных в клетки изотопов восстанавливать бромистое серебро фотоэмульсии, которой покрывают срезы ткани или клетки. Образующиеся после проявления фотоэмульсии зерна серебра (треки) служат своего рода автографами, по локализации которых судят о включении в клетку примененных веществ. Применение меченных тритием предшественников нуклеиновых кислот (тимидина, аденина, цитидина, уридина) позволило выяснить многие важные аспекты синтеза ДНК, РНК и клеточных белков.

Гисто- и иммуноцитохимические методы . В их основе лежит применение химических реакций для выявления распределения химических веществ в структурах клеток, тканей и органов. Современные гистохимические методы позволяют обнаруживать аминокислоты, белки, нуклеиновые кислоты, различные виды углеводов, липидов и др. Для выявления специфических белков используют иммуноцитохимические реакции. Для этого получают специфические сыворотки, содержащие антитела (например, против белка микротрубочек - тубулина). Далее химическим путем соединяют эти антитела с флюорохромом (или другим маркером). Если меченые антитела нанести на гистологический срез, они вступают в соединение с соответствующими белками клетки и возникает специфическое свечение, видимое в люминесцентном микроскопе. Современные иммуноцитохимические методы, помимо флюорохромов, используют другие самые разнообразные специфические маркеры, позволяющие качественно и количественно оценивать содержание в клетке исследуемых соединений. Модификацией рассматриваемого метода является введение меченых антител в цитоплазму живых клеток с помощью микроманипуляторов.

Метод культуры клеток , тканей заключается в выращивании клеток и тканей вне организма в искусственных питательных средах (в условиях in vitro). Для получения изолированных клеток производят предварительную обработку материала ферментами трипсином или коллагеназой. Метод позволяет изучать реакции клеток на различные воздействия, механизмы регуляции пролиферации, дифференцировки и гибели. Особенно важное значение данный метод имеет для эмбриологических и цитофизиологических исследований, а также для трансплантации эмбриональных клеток при лечении врожденных и приобретенных дефектов обмена веществ.

Микроскопическая хирургия клетки - совокупность методических приемов, осуществляемых с помощью специального прибора - микроманипулятора. Этот прибор позволяет производить различного рода тончайшие операции на клетке (введение веществ, удаление или пересадка структурных компонентов клетки, нанесение уколов, разрезов и пр.) и нашел широкое применение в эмбриологии.

Цейтрафферная, или замедленная , микрокино- или видеосъемка - изучение живых клеток. Такой способ позволяет проследить за медленно протекающими изменениями клеток.

Метод фракционирования (дифференциального центрифугирования) клеток. Его суть заключается в получении из клеток изолированных структурных компонентов. Основан на разных скоростях осаждения этих компонентов при вращении гомогенатов клеток в ультрацентрифугах. Данный метод сыграл и играет очень важную роль в изучении химического состава и функциональных свойств субклеточных элементов - прежде всего, органелл.

Конфокальная микроскопия - современный метод, использующий в качестве осветителя лазерный луч, который последовательно сканирует всю толщину препарата. Информация о плотности объекта по каждой линии сканирования передается в компьютер, где специальная программа осуществляет трехмерную реконструкцию исследуемого объекта.

Если заметили ошибку, выделите фрагмент текста и нажмите Ctrl+Enter
ПОДЕЛИТЬСЯ: