Windows. Вирусы. Ноутбуки. Интернет. Office. Утилиты. Драйверы


Введение

Целью данного курсового проекта является построение локальной вычислительной сети. ЛВС - компьютерная сеть, покрывающая обычно относительно небольшую территорию или небольшую группу зданий (дом, офис, фирму, институт). Также существуют локальные сети, узлы которых разнесены географически на расстояния более 12 500 км (космические станции и орбитальные центры). Несмотря на такие расстояния, подобные сети всё равно относят к локальным.

Компьютеры могут соединяться между собой, используя различные среды доступа: медные проводники (витая пара), оптические проводники (оптоволоконные кабели) и через радиоканал (беспроводные технологии). Проводные связи устанавливаются через Ethernet, беспроводные - через Wi-Fi, Bluetooth, GPRS и прочие средства. Отдельная локальная вычислительная сеть может иметь шлюзы с другими локальными сетями, а также быть частью глобальной вычислительной сети (например, Интернет) или иметь подключение к ней.

Чаще всего локальные сети построены на технологиях Ethernet или Wi-Fi. Для построения простой локальной сети используются маршрутизаторы, коммутаторы, точки беспроводного доступа, беспроводные маршрутизаторы, модемы и сетевые адаптеры. Реже используются преобразователи (конвертеры) среды, усилители сигнала (повторители разного рода) и специальные антенны.

В данной работе будет спроектирована ЛВС по технологии Ethernet, при этом горизонтальные и вертикальные кабели будут пятой категории UTP, с возможностью пропускать 100 Мбит/с.

1. Технические требования к ЛВС

1.1 Сетевая модель ООО «Мастер»

пользователь компьютерный сеть локальный

На начальном этапе развития сетей организация имела свои собственные стандарты для объединения компьютеров между собой. Эти стандарты описывали механизмы, необходимые для перемещения данных с одного компьютера на другой. Однако, эти ранние стандарты не были совместимы между собой.

В последующие годы Международная организация по стандартам (ISO - International Standards Organization) и Институт Инженеров по электротехнике и электронике (IEEE - Institute of Electrical and Electronic Engineers) разработали свои модели, которые стали общепризнанными промышленными стандартами для разработки компьютерных сетей. Обе модели описывают сетевые технологии в терминах функциональных уровней.

ISO разработала модель, которая была названа моделью взаимодействия Открытых Систем (OSI - Open System Interconnection). Эта модель используется для описания потока данных между приложением пользователя и физическим соединением с сетью.

Модель OSI разделяет коммуникационные функции на 7 уровней:

· Уровень приложений.

· Уровень представлений.

· Сеансовый уровень.

· Транспортный уровень.

· Сетевой уровень.

· Канальный уровень.

· Физический уровень.

Концепция модели - каждый уровень предоставляет сервис последующему, более высокому уровню. Это позволяет каждому уровню взаимодействовать с тем же уровнем на другом компьютере. Концепция семиуровневой модели изображена на рисунке 1.

Рисунок 1 - Семиуровневая модель ISO OSI

Функциональное назначение уровней:

Физический уровень направляет неструктурированный поток битов данных через физическую среду передачи (кабель).

1. Физический уровень выполняет роль несущей для всех сигналов, передающих данные сгенерированные всеми более высокими уровнями. Этот уровень отвечает за аппаратное обеспечение. Физический уровень определяет физические, механические и электрические характеристики линий связи (тип кабеля, количество разъемов коннектора, назначение каждого разъёма и т.д.). Физический уровень описывает топологию сети и определяет метод передачи данных по кабелю (электрический, оптический).

2. Канальный уровень упаковывает неструктурированные биты данных с физического уровня в структурированные пакеты (фреймы данных).

3. Канальный уровень отвечает за обеспечение безошибочной передачи пакетов. Пакеты содержат исходный адрес и адрес назначения, что позволяет компьютеру извлекать данные, предназначены только ему.

4. Сетевой уровень отвечает за адресацию сообщений и преобразование логических адресов и имен в физические адреса канального уровня. Сетевой уровень определяет путь (маршрут) прохождения данных от передающего к принимающему компьютеру. Сетевой уровень переструктурирует пакеты данных (фреймы) канального уровня (разбивает большие на совокупность небольших или объединяет мелкие).

5. Транспортный уровень осуществляет контроль качества передачи и отвечает за распознание и коррекцию ошибок. Транспортный уровень

6. гарантирует доставку сообщений, создаваемых на уровне приложений.

7. Сеансовый уровень позволяет двум приложениям на разных компьютерах установить, использовать и завершить соединение, которое называется сеансом. Сеансовый уровень координирует связь между двумя прикладными программами, работающими на разных рабочих станциях. Сеансовый уровень обеспечивает синхронизацию задачи и реализует управление диалогом между взаимодействующими процессами (определяет, какая сторона передаёт, когда, как долго и т.д.).

8. Уровень представления служит для преобразования данных, полученных с уровня приложения в повсеместно распознаваемый промежуточный формат. Уровень представления можно назвать сетевым транслятором. Уровень представления позволяет объединять в единую сеть разнотипные компьютеры (IBM PC, Macintosh, DEC и т.д.), преобразуя их данные в единый формат. Уровень представления осуществляет управление защитой в сети, осуществляет шифрование данных (при необходимости). Обеспечивает сжатие данных с целью уменьшения количества бит данных, требующих передачи.

9. Уровень приложений (прикладной уровень) позволяет прикладным программам получать доступ к сетевому сервису. Уровень приложений непосредственно поддерживает пользовательские приложения (программное обеспечение для передачи файлов, доступа к базе данных, электронная почта). Модель стандарта взаимодействия Открытых Систем считается лучшей из известных моделей и наиболее часто используется для описания сетевых сред.

Локальная вычислительная сеть является основной частью корпоративной сети, обеспечивающей функционирование и взаимодействие различных распределенных приложений, которые могут входить в состав информационной системы (ИС). Современная ЛВС должна обладать следующими основными характеристиками:

· производительность, адекватная предъявляемым современными ИС требованиям;

· масштабируемость;

· отказоустойчивость;

· поддержка всех основных коммуникационных стандартов и протоколов;

· совместимость с оборудованием смежных подсистем;

· возможность изменения логической конфигурации ЛВС без изменения физической;

· управляемость.

При разработке архитектуры ЛВС используются современные методы, технологии и устройства, которые позволяют наилучшим образом достичь баланса между основными требованиями к ЛВС и возможностями сети. Требования к современному бизнесу и необходимость поддержки бизнес-приложений определяют ряд параметров, среди которых важнейшими являются:

· высокая доступность сети на уровне не ниже 99,99%;

· высокоскоростная коммутация пакетов;

· качество обслуживания пользователей и приложений;

· управление на основе правил;

· интеграция с сервисами каталогов.

В качестве основы построения ЛВС должна использоваться стратегия, позволяющая создавать и поддерживать сетевые комплексы любых масштабов, интегрировать вновь появляющиеся технологии и стандарты, максимальным образом сохраняя уже сделанные инвестиции и обеспечивая минимальный уровень затрат на поддержку сети.

2. Основные требования к сети

Одним из важнейших требований, предъявляемых к современной ЛВС, является обеспечение безопасности и защищенности процессов, происходящих в ЛВС, так как открытая для доступа извне сеть является уязвимой. Реализация в ЛВС системы управления, статистики и идентификации позволяет обеспечить контроль и повысить защищенность ЛВС.

Для управления сетью и возможностью предупреждать нежелательные ситуации в работе ЛВС в устройствах всей сети должны присутствовать системные средства мониторинга политики качества обслуживания и безопасности, планирования сети и сервисов, которые предоставляют возможности:

· сбора статистики для анализа производительности сети на всех уровнях;

· перенаправления трафика отдельных портов, групп портов и виртуальных портов на анализатор протоколов для детального анализа;

· мониторинга событий в реальном времени для расширения возможностей диагностики помимо внешних анализаторов.

· сбора и сохранения информации о существенных сетевых событиях, включая изменения конфигураций устройств, изменения топологии, программные и аппаратные ошибки

ЛВС должно существовать системное решение, позволяющее решать проблему комплексно, что подразумевает реализацию идентификации сетевых ресурсов и пользователей, защиту информации и ресурсов от несанкционированного доступа, динамический активный контроль над сетью.

ЛВС должна обеспечить всем отделам предприятия:

· возможность обработки текстов;

· доступ к сети Интернет;

· возможность использования электронной почты;

· работу с базами данных;

· доступ к общим принтерам;

· возможность передачи данных.

Стек протоколов TCP/IP изображен на рисунке 2.

Рисунок 2 - Стек протоколов TCP/IP

Стек протоколов TCP/IP делится на 4 уровня: прикладной (application), транспортный (transport), межсетевой (internet) и уровень доступа к среде передачи (network access). Термины, применяемые для обозначения блока передаваемых данных, различны при использовании разных протоколов транспортного уровня - TCP и UDP, поэтому на рис. 2 изображено два стека.

Соотношение уровней стеков OSI и TCP/IP изображено на рисунке 3

Рисунок 3 - Соотношение уровней стеков OSI и TCP/IP

3. Выбор необходимого материала и оборудования

Спроектировать локальную вычислительную сеть организации по технологии Ethernet, располагающейся в двух зданиях (рис.).

Локальная вычислительная сеть организации

Проект должен удовлетворять следующим требованиям:

1. Каждый отдел предприятия должен иметь доступ к ресурсам всех остальных отделов;

2. Трафик, создаваемый сотрудниками одного отдела, не должен влиять на локальные сети других отделов, кроме случаев обращения к ресурсам локальных сетей других отделов;

3. Один файл - сервис может поддерживать не более 30 пользователей;

4. Файловые серверы не могут совместно использоваться несколькими отделами;

5. Все повторители, мосты и коммуникаторы должны располагаться в коммутационных шкафах (WS);

6. Расстояние между компьютерами на моноканале не должно быть менее одного метра;

7. Коммутационное оборудование и файл - серверы должны иметь защиту от пропадания сетевого напряжения;

8. Спроектированная сеть должна работать устойчиво. В случаи неустойчивости работы сети проект должен быть переработан;

9. Допускается использовать следующие комбинации кабелей: витая пара и оптоволокно;

10. Проект должен иметь минимальную стоимость;

11. Скорость передачи данных не должна быть ниже 10 Мбит/сек;

12. Тип используемой сетевой технологии - Ethernet;

13. В проекте можно использовать лишь оборудование из табл. 1.

Таблица 1 Перечень используемого оборудования

Наименование

Условная стоимость (y.e.)

Тонкий коаксиальный кабель (за один метр)

Неэкранированная витая пара (за один метр)

Двужильный оптоволоконный кабель (за один метр)

Сетевой адаптер с разъемом BNC

Сетевой адаптер с разъемом RJ - 45

Двухпортовый повторитель (HUB) c разъемами BNC

Коммутатор на 8 портов с разъемами BNC

Коммутатор на 6 оптических портах

Двухпортовый мост с любой комбинацией портов для коаксиальных кабелей, неэкранированных витых пар и оптоволоконных кабелей

Коммутатор на 6 оптических портах и 24 порта с разъемом RJ - 45

Коммутатор на 8 портов разъемом RJ - 45

Коммутатор на 36 портов разъемом RJ - 45

Источник бесперебойного питания на 800 ВА

Файловый сервер на основе процессора Pentium с предустановленной операционной системой (максимум на 30 пользователей)

В фирме имееется 4 отдела. Из которых три располагаются в корпусе 1, а четвертый, в корпусе два, удаленном от первого на 300 метров. В каждом отделе установлен персональный компьютер (ПК) в количестве:

В отделе маркетинга - 7 шт.

В отделе АСУ - 10 шт.

В производственном отделе - 42 шт.

В проектном отделе - 30 шт.

Соединение ПК, внутри отделов, будет производиться с помощью коаксиального кабеля. Первой задачей является, размещение ПК в каждом отделе, т.е. ПК должны располагаться не в случайном порядке и не кучно, а на приемлемом друг от друга расстоянии. На рисунке 8 показаны схемы размещения ПК, с указанными расстояниями между ними.

Для оптимизации работы вся локальная сеть (ЛВС) разбивается на сегменты. Каждому отделу соответствует свой сегмент. Все сегменты будут подключены к головному коммутатору. Выбираем из таблицы 1 коммутатор на 8 оптических портах с разъемом BNC, который будет являться головным. Коммутатор защищен от падения сетевого напряжения источником бесперебойного питания на 800 ВА. Данный коммутатор автоматически определит скорость работы каждого сегмента и поддержит ее. Это позволит получить требуемую скорость передачи данных, не ниже 10 Мбит/сек. Головной коммутатор располагается в коммутационном шкафу WS3 производственного отдела.

Отдел маркетинга.

В отделе имеется 7 ПК и коммутационный шкаф WC1. Для устойчивой работы сети разбиваем отдел на 2 сегмента по 3 и 4 ПК. Расстояние между последним ПК в первом сегменте и головным коммутатором, для сегмента, что позволяет его использовать как единое целое, т.к. длина сегмента не будет превышать 185 метров.

В коммутационном шкафу WC1 расположен файл-сервер отдела (файл-сервер на основе процессора Pentium с предустановленной операционной системой), источник бесперебойного питания, и коммутатор на 8 портов с разъемами BNC. Все ПК и файл-сервер оснащены сетевыми адаптерами с разъемами BNC и соединены между собой тонким коаксиальным кабелем с помощью BNC Т-конекторов.

Связь компьютеров и файл-сервера

В свободный разъем последнего Т-коннектора вставляется «заглушка» - терминатор (рисунок). Для того, чтобы тонкий коаксиальный кабель не находился в натянутом состоянии, между компьютерами оставляем на каждом участке запас равный одному метру.

Терминатор

Отдел АСУ.

В отделе находятся 10 компьютеров и коммутационный шкаф WC2. В шкафу WC2 располагаются коммутатор, источник бесперебойного питания, который подключен к файл-серверу. Файл-сервер на основе процессора Pentium с предустановленной операционной системой находится непосредственно в отделе. Все ПК и файл-сервер оснащены сетевыми адаптерами с разъемами BNC. Персональные компьютеры и файл-сервер соединены между собой тонким коаксиальным кабелем с помощью BNC Т-коннекторов. В свободный разъем последнего Т-коннектора вставляется «заглушка» - терминатор. Сегмент LS2 для более устойчивой работы раздели на 2 сегмента по 5 ПК. Коммутатор подключен к головному коммутатору в шкафу WC3 в производственном отделе. Для того, чтобы тонкий коаксиальный кабель не находился в натянутом состоянии, между компьютерами оставляем на каждом участке запас равный одному метру. Длина сегмента LS2- а от последнего ПК до головного коммутатора и с учетом запаса кабеля между ПК, составляет, для сегмента LS2-б, что не превышает допустимых 185 метров.

Производственный отдел.

В отделе имеется 42 компьютеров и коммутационный шкаф WC3. В связи с большим числом компьютеров, целесообразно разделить их. Таким образом, мы получаем 7 сегментов LS3-а, LS3-б, LS3-в и т.д., в каждом из которых по 6 ПК. Сегменты объединены между собой 8-ми портовыми коммутаторами с разъемами BNC (3 шт.). Использование коммутатора позволяет без потерь в скорости обойти правило «5-4-3», кроме того, использование коммутатора дает большую защищенность от возникновения коллизий, чем следование вышеупомянутому правилу. В данном отделе будет использоваться два файл-сервера.

В коммутационном шкафу отдела WC3 будут располагаться источник бесперебойного питания, который подключен к файл-серверу; коммутаторы данного отдела, соединяющие отдельные сегменты; головной коммутатор всей сети.

Все ПК и файл-серверы оснащены сетевыми адаптерами с разъемами BNC и соединены между собой тонким коаксиальным кабелем с помощью BNC Т-коннекторов. Для того, чтобы тонкий коаксиальный кабель не находился в натянутом состоянии, между компьютерами оставляем на каждом участке запас равный одному метру. В свободный разъем последнего Т-конектора вставляется «заглушка» - терминатор.

Общая длина сегмента LS3-а от последнего ПК до коммутатора составляет. Общая длина сегмента LS3-б от последнего ПК до коммутатора составляет. Общая длина сегмента LS3-в от последнего ПК до коммутатора составляет. Общая длина сегмента LS3-г от последнего ПК до коммутатора составляет. Общая длина сегмента LS3-д от последнего ПК до коммутатора составляет. Общая длина сегмента LS3-е от последнего ПК до коммутатора составляет. Общая длина сегмента LS3-ж от последнего ПК до коммутатора составляет. Длина ни одного из сегментов не превышает допустимой в 185 м.

Проектный отдел

В отделе имеется 30 ПК и коммутационный шкаф WC4. Сегмент S4 для более устойчивой работы раздели на 5 сегментов. В коммутационном шкафу устанавливаем источник бесперебойного питания, защищающий файл-серверы от падения сетевого напряжения, коммутатор на 8 портов с разъемами BNC объединяющий сегменты. Все ПК и файл-серверы оснащены сетевыми адаптерами с разъемами BNC и соединены между собой тонким коаксиальным кабелем с помощью BNC Т-коннекторов. В свободный разъем последнего Т-коннектора вставляется «заглушка» - терминатор. Для того, чтобы тонкий коаксиальный кабель не находился в натянутом состоянии, между компьютерами оставляем на каждом участке запас равный одному метру. Длина сегмент LS4-а от последнего ПК до коммутационного шкафа WC4 составляет. Длина сегмента LS4-б от последнего ПК до коммутационного шкафа WC4 составляет. Длина сегмента LS4-в от последнего ПК до коммутационного шкафа WC4 составляет. Длина сегмента LS4-г от последнего ПК до коммутационного шкафа WC4 составляет. Длина сегмента LS4-д от последнего ПК до коммутационного шкафа WC4 составляет. Длина ни одного из сегментов не превышает допустимой в 185 м.

Соединение отделов между собой

Корпус 2 удален от корпуса 1 на 300 метров. Корпуса соединены между собой трубопроводом. Для того чтобы связать сегмент WC4 с головным коммутатором, прокладываем в трубопроводе двужильный оптоволоконный кабель (табл. 1). Длина кабеля составляет 320 метров. С каждой стороны оставляем запас 10 метров, два из которых требуются для разделки кабеля, остальные восемь укладываются в шкафу кольцами в связи с технологическими требованиями. Для того чтобы перейти от одной среды передачи данных к другой, выбираем из таблицы 1 двухпортовый мост с комбинацией портов «коаксиальный кабель - оптоволоконный кабель», который устанавливается в шкафу WC4, и «оптоволоконный кабель - коаксиальный кабель», который устанавливается в шкафу WC3. Оба моста защищены от падения напряжения источником бесперебойного питания. Мост «оптоволоконный кабель - коаксиальный кабель» в шкафу WC3 в свою очередь подключается с помощью тонкого коаксиального кабеля непосредственно к головному коммутатору.

Таким образом, получили сеть, соединяющую два здания, имеющую минимальную стоимость, но при этом в ней отсутствует широковещательный трафик и скорость передачи данных достигает не менее 10 Мбит/с. На рисунках 8 и 9 показаны соответственно схема размещения персональных компьютеров, входящих в состав локальной вычислительной сети и схема подключения персональных компьютеров со схемой кабельных прокладок и длин кабельных сегментов.

WS1: Файл - сервер отдела

Коммутатор отдела маркетинга на 8 портов с разъемами BNC.

WS2: Файл - сервер отдела

Источник бесперебойного питания;

Коммутатор отдела АСУ на 8 портов с разъемами BNC.

WS3: 2 источника бесперебойного питания;

2 файл - сервера отдела;

2 коммутатора на 8 портов с разъемами BNC;

Головной коммутатор на 8 портов с разъемами BNC;

Двухпоротовый мост «коаксиальный кабель - оптоволокно».

WS4: Файл - сервер отдела

Источник бесперебойного питания;

Коммутатор проектного отдела на 8 портов с разъемами BNC;

Мост «коаксиальный кабель - оптоволоконный кабель»

На рисунке 12 показана схема размещения оборудования в кабельных шкафах и линии коммутации данного оборудования.

Для того чтобы сеть работала устойчиво, то есть не происходило искажений передаваемой информации или ее пропадание, необходимо выполнения следующих условий:

1. Длина сегмента не должна превышать допустимую величину:

тонкий коаксиал - 185 м;

оптика - 2000 м (имеем максимум 320 м).

2. Общая длина сети не должна превышать 2,5 км.

3. Количество компьютеров в сети не должно превышать 90 шт. (имеем 89 компьютеров + 5 файл-серверов отделов).

4. Один файл-сервер может поддерживать не более 30 пользователей (имеем максимум 30 пользователей).

5. Файл-серверы не могут совместно использоваться несколькими отделами.

6. Все повторители, мосты и коммутаторы должны распологаться в коммутационных шкафах.

7. Должно выполняться правило «5-4-3» (выполняется).

Не имеется ни одного превышения требуемых параметров. Следовательно, нет необходимости выполнять проверку устойчивости с использованием PDV (время двойного интервала - не должно превышать 575 битовых интервалов) и PVV (уменьшение межкадрового интервала не должно превышать 49 битовых интервалов). Соблюдение этих требований обеспечивает устойчивую работу сети даже в тех случаях, когда нарушаются вышеизложенные условия. Данная проверка будет выполнена для полной уверенности работоспособности сети.

Для упрощения расчетов используются справочные данные организации IEEE, содержащие данные задержек распространения сигнала в повторителях, приемопередатчиках и различных физических средах.

Таблица 4 Данные для расчета PDV

Для расчета на устойчивость рисуют участок с наиболее удаленными станциями.

Левый сегмент - сегмент, откуда начинается прохождение сигнала.

Правый сегмент - сегмент, куда приходит сигнал.

Промежуточный сегмент - сегмент между левым и правым сегментами.

Расчет должен проводиться дважды, при распространении сигнала в обе стороны, т.к. результат может быть разный в случае несимметричной сети. Если хотя бы в одном случае по PDV не выполняется, сеть будет терять кадры из-за пропуска коллизий.

Расчет будем производить для двух самых удаленных друг от друга компьютеров из отдела маркетинга и из проектного отдела. Схематическое изображение показано на рисунке 13.

Произведем расчет устойчивости сети с использованием PDV и PVV

4. Экономический расчет проекта

Практическое использование моделей ЛВС во многих случаях предполагает наличие информации о реальных характеристиках вычислительного процесса. Такая информация может быть получена эмпирическими методами, на основе которых в настоящее время создаются средства для исследования аппаратно-программных компонентов ЛВС. Необходимая информация собирается с помощью специальных средств,

которые обеспечивают измерение параметров, характеризующих динамику функционирования ЛВС в режимах опытной и нормальной эксплуатации. К таким средствам относятся сетевые анализаторы, анализаторы протоколов и т.п..Создание средств для измерений параметров функционирования ЛВС, в том числе и операционных систем ЛВС, относится к числу новых задач в вычислительной технике. Экспериментальные методы позволяют создать основу количественной оценки эффективности ВС для достижения следующих практических целей: анализа имеющихся ЛВС, выбора наилучшей и синтеза новой ЛВС. Оценка характеристик аппаратно-программных средств связана с проведением экспериментов и измерений, которые с практической точки зрения могут рассматриваться как процесс получения полезной информации. Данные измерений представляются в виде, пригодном для последующего анализа. Это осуществляется с помощью специальных средств обработки, создание которых связано с разработкой анализаторов. Эта взаимосвязь касается, например, выбора единых форматов данных, удобных не только для измерений, но и для обработки их результатов. В общем случае этап измерений предшествует этапу обработки, и средства обработки должны быть рассчитаны на эффективное применение к большим массивам информации, поскольку для измерений на ЛВС характерны, как правило, большие объемы и высокая плотность регистрируемых данных. На завершающем этапе экспериментальных исследований проводится анализ результатов измерений, который состоит в получении содержательных выводов об исследуемой ЛВС. Важным условием для формирования таких выводов является удачное представление результатов измерений. Эффективность экспериментальных методов в значительной степени зависит от качества планирования экспериментов и правильности выбора типа нагрузки. Эксперимент состоит из набора тестов, выполняемых в процессе исследований, а тест, в свою очередь, состоит из ряда сеансов или «прогонов». Термин «сеанс» чаще применяется для измерений, а «прогон», как правило, - для имитационного моделирования. В течение сеанса или прогона накапливается информация о поведении системы и, возможно, рабочей нагрузке. Поскольку рабочая нагрузка меняется, число наблюдений, которое требуется получить для каждой интересующей пользователя величины, должно быть таким, чтобы распределения для этих величин и их моменты могли быть оценены с требуемой точностью. Таким образом, продолжительность сеанса зависит от необходимого числа наблюдений.

Эксперимент длительностью в один сеанс достаточен для оценки, если нужно, рассмотреть только одну конфигурацию системы и один тип, рабочей нагрузки. Например, если измерения производятся для того, чтобы выяснить, обеспечивает ли данная ЛВС при заданной рабочей нагрузке (трафике) удовлетворительную производительность, т.е. отвечает ли она определенным требованиям. Эксперименты длительностью в несколько сеансов необходимы, если предстоит определить влияние определенных факторов на производительность системы или производится оптимизация системы последовательными итерациями.

5. Настройка сетевого оборудования и конечных пользователей

Настройка оборудования - наиболее сложный этап в инсталляции сети. Чем сложнее сеть, тем больше разнородного технически сложного оборудования в ней применяется, тем более глубокие знания и опыт требуется от инженера для настройки этого оборудования. Окончательная настройка и отладка оборудования под цели заказчика занимает иногда намного большее время, чем инсталляция. От оптимизации большого количества параметров каждого сетевого устройства зависит производительность будущей сети. А значит от этого зависит производительность работы персонала компании.

Настройка оборудования может включать, по желанию заказчика, в себя следующие этапы и работы:

1. настройка коммутаторов, маршрутизаторов и межсетевых экранов (Firewall). Настройка обычно включает в себя разделение сети на виртуальные локальные сети, разработку и настройку правил маршрутизации, обеспечения качества обслуживания, обеспечения безопасности, обеспечение шифрования критичных данных, организацию удаленного защищенного доступа к данным корпоративной сети. В список настраиваемого оборудования входят активные устройства сетевой среды, такие как мультиплексоры, коммутаторы, маршрутизаторы, межсетевые экраны, служебные сервера (DNS, DHCP, HTTP, MAIL), а также очень часто магистральные медные и оптические мультиплексоры.

2. в настоящее время с развитием беспроводных технологий ни одна корпоративная сеть передачи данных не обходится без WI-FI сети. Поэтому в настройку также попадают и беспроводные точки доступа. Организация удобной, масштабируемой, управляемой из единой точки сети требует знания современных технологий. Правильно настроенная сеть обеспечивает высокую надежность, централизованное управление, а также дополнительные сервисы, такие как авторизация, handover, и другие.

3. помимо сетевого оборудования требуют настройки и сетевые принтеры, многофункциональные печатающие устройства, копиры. В настоящее время они являются автономными сетевыми устройствами и наравне с компьютерной техникой требуют профессиональной настройки. Ввод настроек лучше поручить специалистам, т.к. непрофессиональное обращение с высокотехнологичной техникой может вывести ее из строя. Помимо этого, неавторизованные инсталляции не приветствуются производителями, и самостоятельно произведенная настройка и установка оборудования, без привлечения авторизованного сервис-центра, - риск потерять гарантию на дорогостоящее оборудование.

4. технологии передачи данных совершенствуются, и на сегодня в список оборудования, часто используемого корпоративными заказчиками, традиционно входят системы видеоконференцсвязи. Правильная настройка системы позволяет получать качественное изображение, экономить на полосе пропускания, полностью использовать весь функционал системы для конечного пользователя. В систему видеоконференцсвязи входят не только сервера видеоконференции, но и оконечные терминальные устройства - IP видеотелефоны, видеотерминалы, системы коллективной видеосвязи. Правильная настройка всего класса устройств, совместно с центральной системой, обеспечит реализацию качественной услуги и сервиса для пользователя.

Современный широкополосный беспроводной маршрутизатор представляет собой многофункциональное устройство, в котором объединены:

· маршрутизатор;

· коммутатор сети Fast Ethernet (10/100 Мбит/с);

· точка беспроводного доступа;

· брандмауэр;

· NAT-устройство.

Основная задача, возлагаемая на беспроводные маршрутизаторы - это объединение всех компьютеров домашней сети в единую локальную сеть с возможностью обмена данными между ними и организация высокоскоростного, безопасного подключения к Интернету всех домашних компьютеров.

Использование беспроводного маршрутизатора для подключения

В настоящее время наиболее популярными способами являются подключение к Интернету по телефонной линии с использованием ADSL-модема и по выделенной линии Ethernet. Исходя из этого, все беспроводные маршрутизаторы можно условно разделить на два типа:

· для подключения по выделенной Ethernet-линии;

· для подключения по телефонной линии.

В последнем случае в маршрутизатор встроен еще и ADSL-модем.

Согласно статистике, у провайдеров все более популярным становится способ подключения по выделенной Ethernet-линии. При этом предназначенные для этого маршрутизаторы могут использоваться и для подключения к Интернету по телефонной линии, но для этого придется дополнительно приобрести ADSL-модем.

В дальнейшем мы будем рассматривать только маршрутизаторы, предназначенные для подключения к Интернету по выделенной Ethernet-линии.

Итак, маршрутизаторы - это сетевые устройства, устанавливаемые на границе внутренней локальной домашней сети и Интернета, а следовательно, выполняющие роль сетевого шлюза. С конструктивной точки зрения маршрутизаторы должны иметь как минимум два порта, к одному из которых подключается локальная сеть (этот порт называется внутренним LAN-портом), а ко второму - внешняя сеть, то есть Интернет (данный порт называется внешним WAN-портом). В домашних маршрутизаторах предусмотрены один WAN - порт и четыре внутренних LAN-порта, которые объединяются в коммутатор (рис. 2). И WAN-, и LAN-порты имеют интерфейс 10/100Base-TX, и к ним можно подключать сетевой Ethernet-кабель.

LAN и WAN - порты маршрутизатора

Интегрированная в маршрутизатор точка беспроводного доступа позволяет организовать беспроводной сегмент сети, который для маршрутизатора относится к внутренней сети. В этом смысле компьютеры, подключаемые к маршрутизатору беспроводным способом, ничем не отличаются от тех, что подключены к LAN-порту.

Задача интегрированного в маршрутизатор брандмауэра сводится к обеспечению безопасности внутренней сети. Для этого брандмауэры должны уметь маскировать защищаемую сеть, блокировать известные типы хакерских атак и утечку информации из внутренней сети, контролировать приложения, получающие доступ во внешнюю сеть.

Для того чтобы реализовать указанные функции, брандмауэры анализируют весь трафик между внешней и внутренней сетями на предмет его соответствия тем или иным установленным критериям или правилам, определяющим условия прохождения трафика из одной сети в другую. Если трафик отвечает заданным критериям, то брандмауэр пропускает его через себя. В противном случае, то есть если установленные критерии не соблюдены, трафик блокируется. Брандмауэры фильтруют как входящий, так и исходящий трафик, а также позволяют управлять доступом к определенным сетевым ресурсам или приложениям.

По своему назначению брандмауэры напоминают контрольно-пропускной пункт охраняемого объекта, где производится проверка документов всех входящих на территорию объекта и всех покидающих ее. Если пропуск в порядке - доступ на территорию разрешен. Аналогично действуют и брандмауэры, только в роли людей, проходящих через КПП, выступают сетевые пакеты, а пропуском является соответствие заголовков этих пакетов заданному набору правил.

Все современные маршрутизаторы со встроенными брандмауэрами являются NAT-устройствами, то есть поддерживают протокол трансляции сетевых адресов NAT (Network Address Translation). Данный протокол не является составной частью брандмауэра, но способствует повышению безопасности сети. Основная его задача - решение проблемы дефицита IP-адресов, которая становится все более актуальной по мере роста числа компьютеров.

Протокол NAT определяет, каким образом происходит преобразование сетевых адресов. NAT-устройство преобразует IP-адреса, зарезервированные для частного использования в локальных сетях, в открытые IP-адреса. К частным адресам относятся следующие IP-диапазоны: 10.0.0.0-10.255.255.255, 172.16.0.0-172.31.255.255, 192.168.0.0-192.168.255.255. Частные IP-адреса нельзя использовать в Глобальной сети, поэтому они могут свободно применяться только для внутренних целей.

Помимо перечисленных функциональных возможностей некоторые модели беспроводных маршрутизаторов имеют ряд дополнительных. К примеру, они могут быть оборудованы портами USB 2.0, к которым можно подключать внешние устройства с возможностью организации разделяемого сетевого доступа к ним. Так, при подключении к маршурутизатору принтеров по интерфейсу USB 2.0 мы получаем еще и принт-сервер, а при подключении внешнего жесткого диска - сетевое устройство хранения данных типа NAS (Network Attached Storage). Кроме того, в последнем случае используемое в маршрутизаторах ПО позволяет организовать даже FTP-сервер.

Существуют модели маршрутизаторов, которые имеют не только USB-порты, но и встроенный жесткий диск, а потому могут применяться для сетевого хранения данных, в качестве FTP-серверов для доступа как извне, так и из внутренней сети и даже выполнять функции мультимедийных центров.

Несмотря на кажущуюся схожесть функциональных возможностей широкополосных беспроводных маршрутизаторов, между ними есть существенные различия, которые в конечном счете и определяют, подойдет конкретный маршрутизатор для ваших целей или нет. Дело в том, что разные интернет-провайдеры используют различные типы подключения к Интернету. Если речь идет о подключении одного компьютера (без применения маршрутизатора), то проблем не возникает, поскольку пользовательские операционные системы (например, Windows XP/Vista) содержат программные средства, которые поддерживают все типы подключения, применяемые провайдерами. Если же для подключения домашней сети к Интернету используется маршрутизатор, то необходимо, чтобы он полностью поддерживал тип подключения, применяемый провайдером (типы подключения мы рассмотрим в разделе, посвященном настройке WAN-интерфейса).

Практически все маршрутизаторы, ориентированные на домашних пользователей, имеют встроенные программные средства быстрой настройки (мастера настройки) или средства для автонастройки - например Quick Setup, Smart Setup, NetFriend и др. Однако нужно иметь в виду, что всегда может найтись такой провайдер, который не будет поддерживать функцию автоматической настройки конкретного маршрутизатора. Кроме того, наличие таких функций вовсе не означает, что нажатием одной «волшебной» кнопки вы сразу справитесь со всеми проблемами и настроите свой маршрутизатор. Ведь даже для того, чтобы добраться до этой «волшебной» кнопки, придется выполнить некоторые настройки сетевого интерфейса в компьютере.

По вышеизложенным причинам мы не будем полагаться на возможности автоматической настройки маршрутизатора и рассмотрим наиболее универсальный способ его ручной пошаговой настройки.

Настройку маршрутизатора целесообразно производить в следующей последовательности:

· Получение доступа к web-интерфейсу маршрутизатора.

· Настройка LAN-интерфейса и встроенного DHCP-сервера.

· Настройка WAN-интерфейса с организацией соединения с Интернетом для всех компьютеров локальной сети.

· Настройка беспроводной сети (если имеются беспроводные клиенты).

· Настройка брандмауэра.

· Настройка протокола NAT (если требуется).

Первым этапом настройки маршрутизатора является получение сетевого доступа к его настройкам посредством web-интерфейса (во все маршрутизаторы встроен web-сервер).

Рассмотрим подробнее этапы настройки LAN-интерфейса и встроенного DHCP-сервера, а также настройки WAN-интерфейса. О настройке беспроводной сети, брандмауэра и протокола NAT в данной статье мы рассказывать не станем - этим вопросам будут посвящены отдельные публикации.

Получение доступа к web - и нтерфейсу маршрутизатора

Чтобы получить доступ к web-интерфейсу маршрутизатора, к LAN-порту необходимо подключить компьютер (ноутбук). Первое, что потребуется выяснить, - это IP-адрес LAN-порта маршрутизатора, логин и пароль, заданный по умолчанию. Любой маршрутизатор, будучи сетевым устройством, имеет собственный сетевой адрес (IP-адрес). Для того чтобы выяснить IP-адрес LAN-порта маршрутизатора и пароль, придется пролистать инструкцию пользователя.

Если маршрутизатор не эксплуатировался ранее, то его настройки совпадают с настройками по умолчанию (заводскими). В большинстве случаев IP-адрес LAN-порта маршрутизатора - 192.168.1.254 либо 192.168.1.1 с маской подсети 255.255.255.0, а пароль и логин - admin. Если маршрутизатор уже эксплуатировался и в нем менялись настройки по умолчанию, но вы не знаете ни IP-адреса LAN-порта, ни логина и пароля, то первое, что придется сделать, - это сбросить все настройки (вернуться к заводским). Для этого у всех маршрутизаторов имеется специальная заглубленная кнопка сброса настроек (Reset). Если нажать на нее (при включенном питании маршрутизатора) и удерживать в течение нескольких секунд, то маршрутизатор перезагрузится и восстановит свои заводские настройки.

Кроме возможности быстрого возврата к заводским настройкам, большинство маршрутизаторов имеет встроенный DHCP-сервер, активированный по умолчанию. Это позволяет легко подключаться к маршрутизатору, поскольку компьютеру, подключенному к LAN-порту маршрутизатора, будет автоматически присвоен IP-адрес той же подсети, к которой принадлежит и сам LAN-порт маршрутизатора, а в качестве IP-адреса шлюза по умолчанию будет применяться IP-адрес LAN-порта маршрутизатора. Но для того, чтобы воспользоваться этой возможностью, необходимо убедиться, что в свойствах сетевого соединения компьютера, применяемого для подключения к LAN-порту маршрутизатора, установлена функция динамического присвоения IP-адреса (Obtain IP address automatically). Она активирована по умолчанию для всех сетевых интерфейсов, и если после установки операционной системы сетевые соединения на компьютере не настраивались специально, то, скорее всего, вы сможете получить доступ к настройкам маршрутизатора сразу после подключения к его LAN-порту компьютера.

Если же таким способом подключиться к маршрутизатору не удается, то придется предварительно настроить сетевой интерфейс подключаемого к маршрутизатору компьютера. Смысл настройки заключается в том, чтобы сетевой интерфейс компьютера, который подключается к LAN-порту маршрутизатора, и LAN-порт маршрутизатора имели IP-адреса, принадлежащие к одной и той же подсети. Предположим, LAN-порт маршрутизатора имеет IP-адрес 192.168.1.1. Тогда сетевому интерфейсу подключаемого компьютера необходимо присвоить статический IP-адрес 192.168.1.х (например, 192.168.1.100) с маской подсети 255.255.255.0. Кроме того, в качестве IP-адреса шлюза по умолчанию необходимо указать IP-адрес LAN-порта маршрутизатора (в нашем случае - 192.168.1.1).

Настройка сетевого интерфейса компьютера зависит от используемой операционной системы.

Заключение

В данной работе были рассмотрены основные составные части ЛВС, а также процесс передачи данных в сети на всех уровнях (логических и аппаратных). Смоделирована локальная вычислительная сеть торгового предприятия с учетом требований к будущей структуре. Исходя из размеров помещения найдена и максимально оптимизирована длина кабеля, соединяющая все компоненты сети.

На сегодняшний день разработка и внедрение ЛВС является одной из самых интересных и важных задач в области информационных технологий. Все больше возрастает необходимость в контроле информации в режиме реального времени, постоянно растет трафик сетей всех уровней. В связи с этим появляются новые технологии передачи информации в ЛВС.

Например, среди последних открытий следует отметить возможность передачи данных с помощью обычных линий электропередач, при чем данный метод позволяет увеличить не только скорость, но и надежность передачи.

Сетевые технологии очень быстро развиваются, в связи с чем они начинают выделяться в отдельную информационную отрасль. Ученые прогнозируют, что ближайшим достижением этой отрасли будет полное вытеснение других средств передачи информации (телевидение, радио, печать, телефон и т.д.). На смену этим «устаревшим» технологиям придет компьютер, он будет подключен к некоему глобальному потоку информации, возможно даже это будет Internet, и из этого потока можно будет получить любую информацию в любом представлении.

Список используемой литературы

1. СПб1. Кузнецов М.А., «Современные технологии и стандарты подвижной связи».: Линк, 2006.

2. Маккалоу Д., «Секреты беспроводных технологий» / - М.: НТ-Пресс, 2010.

3. Мауфер Т., «WLAN: практическое руководство для администраторов и профессиональных пользователей» / - М.: КУДИЦ-Образ, 2011.

4. Новиков Ю.В., Кондратенко С.В. Основы локальных сетей. Курс лекций. - М.: Интернет-университет информационных технологий, 2010.

5. Кузнецов М.А., «Современные технологии и стандарты подвижной связи» - СПб.: Линк, 2006.

6. Кузнецов М.А., «Современные технологии и стандарты подвижной связи» / Рыжков А.Е. - СПб.: Линк, 2009.

7. Маккалоу Д., «Секреты беспроводных технологий» / - М.: НТ-Пресс, 2010.

8. Мауфер Т., «WLAN: практическое руководство для администраторов и профессиональных пользователей» / - М.: КУДИЦ-Образ, 2011.

9. Новиков Ю.В., Кондратенко С.В. Основы локальных сетей. Курс лекций. - М.: Интернет-университет информационных технологий, 2010.

10. Олифер В.Г., Основы сетей передачи данных. - М.: Издательство: Питер, 2008.

11. Олифер В.Г., «Базовые технологии локальных сетей» - СПб.: Питер, 2009.

12. Олифер В.Г., Компьютерные сети. Принципы, технологии, протоколы. Учебник. - Санкт-Петербург, Питер, 2011.

13. Педжман Р., «Основы построения беспроводных локальных сетей стандарта 802.11. Практическое руководство по изучению, разработке и использованию беспроводных ЛВС стандарта 802.11» / Джонатан Лиэри. - М.: Cisco Press Перевод с английского Издательский дом «Вильямс», 2009.

14. Шахнович С., Современные беспроводные технологии. - ПИТЕР, 2008.

15. Щербо В.К. Стандарты вычислительных сетей. - М.: Кудиц - Образ, 2010.


Подобные документы

    Общая характеристика локальных вычислительных сетей, их основные функции и назначение. Разработка проекта модернизации локальной компьютерной сети предприятия. Выбор сетевого оборудования, расчет длины кабеля. Методы и средства защиты информации.

    дипломная работа , добавлен 01.10.2013

    Настройка телекоммуникационного оборудования локальной вычислительной сети. Выбор архитектуры сети. Сервисы конфигурации сервера. Расчет кабеля, подбор оборудования и программного обеспечения. Описание физической и логической схем вычислительной сети.

    курсовая работа , добавлен 22.12.2014

    Выбор протокола и технологии построения локальной вычислительной сети из расчёта пропускной способности - 100 Мбит/с. Выбор сетевого оборудования. Составление план сети в масштабе. Конфигурация серверов и рабочих станций. Расчёт стоимости владения сети.

    курсовая работа , добавлен 28.01.2011

    Разработка топологии сети, выбор операционной системы, типа оптоволоконного кабеля. Изучение перечня функций и услуг, предоставляемых пользователям в локальной вычислительной сети. Расчет необходимого количества и стоимости устанавливаемого оборудования.

    курсовая работа , добавлен 26.12.2011

    Построение сегментов локальной вычислительной сети, выбор базовых технологий для подразделений. Построение магистральных каналов взаимодействия между сегментами. Выбор оборудования для магистрали центральный офис – производство. Схема вычислительной сети.

    курсовая работа , добавлен 23.01.2013

    Расчеты параметров проектируемой локальной вычислительной сети. Общая длина кабеля. Распределение IP-адресов для спроектированной сети. Спецификация оборудования и расходных материалов. Выбор операционной системы и прикладного программного обеспечения.

    курсовая работа , добавлен 01.11.2014

    Анализ зоны проектирования, информационных потоков, топологии сети и сетевой технологии. Выбор сетевого оборудования и типа сервера. Перечень используемого оборудования. Моделирование проекта локальной сети с помощью программной оболочки NetCracker.

    курсовая работа , добавлен 27.02.2013

    Подбор пассивного сетевого оборудования. Обоснование необходимости модернизации локальной вычислительной сети предприятия. Выбор операционной системы для рабочих мест и сервера. Сравнительные характеристики коммутаторов D-Link. Схемы локальной сети.

    курсовая работа , добавлен 10.10.2015

    Выбор и обоснование архитектуры локальной вычислительной сети образовательного учреждения СОС Ubuntu Server. Описание физической схемы телекоммуникационного оборудования проектируемой сети. Настройка сервера, компьютеров и программного обеспечения сети.

    курсовая работа , добавлен 12.06.2014

    Выбор и обоснование технического обеспечения для разрабатываемой локальной сети в школе с использованием технологии Ethernet и топологией "звезда". Перечень активного и пассивного технического оборудования, необходимого для локальной вычислительной сети.

Федеральное агентство по образованию

ОМСКИЙ ИНСТИТУТ

РОССИЙСКИЙ ГОСУДАРСТВЕННЫЙ ТОРГОВО– ЭКОНОМИЧЕСКИЙ УНИВЕРСИТЕТ

Кафедра «Математика и информатика»

Контрольная работа

По курсу «Информатика»

На тему: «Основные принципы построения

локальных вычислительных сетей»

Вариант № 25

Введение……………………………………………………………………………...2

1. Понятие ЛВС……………………………………………………………………..3

2. Базовая модель OSI (OpenSystemInterconnection)…………………………….5

3. Архитектура ЛВС………………………………………………………………...8

3.1. Типы сетей…………………………………………………………………...8

3.2. Топологии вычислительной сети………………………………………….11

3.3. Сетевые устройства и средства коммуника­ций…………………………15

3.3.1.Виды используемых кабелей……………………………………........15

3.3.2.Сетевая карта………………………………………………………….16

3.3.3.Разветвитель (HUB)…………………………………………………..17

3.3.4.Репитер…………………………………………………………….......17

3.4. Типы построения сетей по методам передачи информации……………..18

4. Правила монтажа кабельной части ЛВС………………………………………19

Список литературы…………………………………………………………………26

Приложение…………………………………………………………………………27

На сегодняшний день в мире существует более 130 миллионов компьютеров и бо­лее 80 % из них объединены в различные информационно-вычислительные сети от малых локальных сетей в офисах до глобальных сетей типа Internet. Всемирная тенденция к объединению компьютеров в сети обусловлена рядом важных причин, таких как ускорение пе­редачи информационных сообщений, возможность быстрого обмена информацией между пользователями, получение и передача сообщений (факсов, E - Mail писем и прочего) не отходя от рабочего места, возможность мгновенного получения любой информации из лю­бой точки земного шара, а так же об­мен информацией между компьютерами разных фирм производителей ра­бо­тающих под разным программным обеспечением.

Такие огромные потенциальные возможности, которые несет в себе вычислитель­ная сеть и тот новый потенциальный подъем, который при этом испытывает информацион­ный комплекс, а так же значительное ускорение производственного процесса не дают нам право не принимать это к разработке и не применять их на практике.

Поэтому необходимо разработать принципиальное решение вопроса по организа­ции ИВС (информационно-вычислительной сети) на базе уже существующего компьютер­ного парка и программного комплекса отвечающего современным научно-техническим требованиям с учетом возрастаю­щих потребностей и возможностью дальнейшего посте­пенного развития сети в связи с появлением новых технических и программных решений.


1. Понятие ЛВС.

Что такое локальная вычислительная сеть (ЛВС)? Под ЛВС понимают совместное подключение нескольких отдельных компьютерных рабочих мест (рабочих станций) к еди­ному каналу передачи данных. Благодаря вычислительным сетям мы полу­чили возможность одновременного использо­вания программ и баз данных несколькими пользователями.

Понятие локальная вычислительная сеть - ЛВС (англ. LAN - Lokal Area Network) относится к географически ограниченным (территориально или производственно) аппаратно-программным реализациям, в которых несколько компьютерных систем связанны друг с другом с помощью соответствующих средств коммуникаций. Благодаря такому со­единению пользователь может взаимодействовать с другими рабочими станциями, подключенными к этой ЛВС.

В производственной практике ЛВС играют очень большую роль. Посредством ЛВС в систему объединяются персональные компьютеры, распо­ложенные на многих удален­ных рабочих местах, которые используют совместно оборудование, программные средства и информацию. Рабочие места сотрудников перестают быть изолированными и объеди­няются в единую систему. Рассмотрим преимущества, получаемые при сетевом объединении персональных компьютеров в виде внутрипроизводственной вычислительной сети.

Разделение ресурсов.

Разделение ресурсов позволяет экономно использовать ресурсы, например, управлять периферийными устройствами, такими как лазерные печатающие устройства, со всех присоединенных рабочих станций.

Разделение данных.

Разделение данных предоставляет возможность доступа и управле­ния базами данных с периферийных рабочих мест, нуждающихся в инфор­мации.

Разделение программных средств.

Разделение программных средств, предоставляет возможность одновременного использования централизованных, ранее установленных программных средств.

Разделение ресурсов процессора.

При разделении ресурсов процессора возможно использование вычислительных мощностей для обработки данных другими системами, входящими в сеть. Предоставляе­мая возможность заключается в том, что на имеющиеся ресурсы не “набрасываются” мо­ментально, а только лишь че­рез специальный процессор, доступный каждой рабочей станции.

Многопользовательский режим .

Многопользовательские свойства системы содействуют одновременному использованию централизованных прикладных программных средств, ранее установленных и управляемых, например, если пользователь системы работает с другим заданием, то те­кущая вы­полняемая работа отодвигается на задний план.

Все ЛВС работают в одном стандарте, принятом для компьютерных сетей - в стандарте Open Systems Interconnection (OSI) – взаимодействия открытых систем.

Топология типа звезда.

Концепция топологии сети в виде звезды пришла из области больших ЭВМ, в которой головная машина получает и обрабатывает все данные с периферийных устройств как активный узел обработки данных. Этот принцип применяется в системах передачи данных, например, в электронной почте RELCOM. Вся информация между двумя периферийными рабочими мес­тами проходит через центральный узел вычислительной сети.

рис.1 Топология в виде звезды

Пропускная способность сети определяется вычислительной мощностью узла и гарантируется для каждой рабочей станции. Коллизий (столкновений) данных не возникает.

Кабельное соединение довольно простое, так как каждая рабочая станция связана с узлом. Затраты на прокладку кабелей высокие, особенно когда центральный узел географически расположен не в центре топологии.

При расширении вычислительных сетей не могут быть использованы ранее выполненные кабельные связи: к новому рабочему месту необходимо прокладывать отдельный кабель из центра сети.

Топология в виде звезды является наиболее быстродействующей из всех топологий вычислительных сетей, поскольку передача данных между рабочими станциями проходит через центральный узел (при его хорошей производительности) по отдельным линиям, используемым только этими рабочими станциями. Частота запросов передачи информации от одной станции к другой невысокая по сравнению с достигаемой в других топологиях.

Производительность вычислительной сети в первую очередь зависит от мощности центрального файлового сервера. Он может быть узким ме­стом вычислительной сети. В случае выхода из строя центрального узла нарушается работа всей сети.

Центральный узел управления - файловый сервер может реализо­вать оптимальный механизм защиты против несанкционированного доступа к информации. Вся вычислительная сеть может управляться из ее центра.

Кольцевая топология.

При кольцевой топологии сети рабочие станции связаны одна с дру­гой по кругу, т.е. рабочая станция 1 с рабочей станцией 2, рабочая станция 3

рис.2 Кольцевая топология

с рабочей станцией 4 и т.д. Последняя рабочая станция связана с первой. Коммуникационная связь замыкается в кольцо.

Прокладка кабелей от одной рабочей станции до другой может быть довольно сложной и дорогостоящей, особенно если географически рабочие станции расположены далеко от кольца (например, в линию).

Сообщения циркулируют регулярно по кругу. Рабочая станция посы­лает по определенному конечному адресу информацию, предварительно получив из кольца запрос. Пересылка сообщений является очень эффектив­ной, так как большинство сообщений можно отправлять “в дорогу” по ка­бельной системе одно за другим. Очень просто можно сделать кольцевой запрос на все станции. Продолжительность передачи информации увеличи­вается пропорционально количеству рабочих станций, входящих в вычисли­тельную сеть.

Основная проблема при кольцевой топологии заключается в том, что каждая рабочая станция должна активно участвовать в пересылке информа­ции, и в случае выхода из строя хотя бы одной из них вся сеть парализуется. Неисправности в кабельных соединениях локализуются легко.

Подключение новой рабочей станции требует кратко срочного выключения сети, так как во время установки кольцо должно быть разомкнуто. Ограниче­ния на протяженность вычислительной сети не существует, так как оно, в конечном счете, определяется исключительно расстоянием между двумя рабочими станциями.

При шинной топологии среда передачи информации представляется в форме коммуникационного пути, доступного дня всех рабочих станций, к которому они все должны быть подключены. Все рабочие станции могут непосредственно вступать в контакт с любой рабочей станцией, имеющейся в сети.

рис.3 Шинная топология

Рабочие станции в любое время, без прерывания работы всей вычислительной сети, могут быть подключены к ней или отключены. Функциони­рование вычислительной сети не зависит от состояния отдельной рабочей станции.

В стандартной ситуации для шинной сети Ethernet часто используют тонкий кабель или Cheapernet-кaбeль с тройниковым соединителем. Выключение и особенно подключение к такой сети требуют разрыва шины, что вы­зывает нарушение циркулирующего потока информации и зависание сис­темы.

Древовидная структура ЛВС.

Наряду с известными топологиями вычислительных сетей кольцо, звезда и шина, на практике применяется и комбинированная, на пример древовидна структура. Она образуется в основном в виде комбинаций вы­шеназванных топологий вычислительных сетей. Основание дерева вычис­лительной сети располагается в точке (корень), в которой собираются ком­муникационные линии информации (ветви дерева).

Вычислительные сети с древовидной структурой применяются там, где невозможно непосредственное применение базовых сетевых структур в чистом виде.

рис.4 Древовидная структура

3 .3. Сетевые устройства и средства коммуника­ций.

В качестве средств коммуникации наиболее часто используются витая пара, коаксиальный кабель, оптоволоконные линии. При выборе типа кабеля учитывают сле­дующие показатели:

· стоимость монтажа и обслуживания,

· скорость передачи информации,

· ограничения на величину расстояния передачи информации без дополни­тельных усилителей-повторителей (репитеров),

· безопасность передачи данных.

Главная проблема заключается в одновременном обеспечении этих показате­лей, например, наивысшая скорость передачи данных ограничена максимально воз­можным расстоянием передачи данных, при котором еще обеспечивается требуемый уровень защиты данных. Легкая наращивае­мость и простота расширения кабельной системы влияют на ее стоимость.

3.3.1. Виды используемых кабелей.

Витая пара.

Наиболее дешевым кабельным соединением является витое двух­жильное про­водное соединение часто называемое "витой парой" (twisted pair). Она позволяет пе­редавать информацию со скоростью до 10 Мбит/с., легко наращивается, однако не защищена от помех. Длина кабеля не может превышать 1000 м при скорости передачи 1 Мбит/с. Преимущест­вами являются низкая цена и простота уста­новки. Для повышения помехозащищенности информации часто используют экраниро­ванную ви­тую пару, т.е. витую пару, помещенную в экранирующую оболочку, подобно экрану коаксиального кабеля. Это увеличивает стоимость витой пары и при­ближает ее цену к цене коаксиального кабеля.

Еthernet-кабель.

Ethernet-кабель также является коаксиальным кабелем с волновым сопротив­лением 50 Ом. Его называют еще толстый Ethernet (thick), жел­тый кабель (yellow ca­ble) или 10BaseT5 . Он использует 15-контактное стандартное включе­ние. Вследствие помехоза­щищенности он является дорогой альтернативой обычным коаксиальным кабелям. Мак­симально доступное расстояние без повторителя не превышает 500 м, а общее расстояние сети Ethernet - около 3000 м. Ethernet-кабель, благодаря своей магистральной топологии, ис­пользует в конце лишь один нагрузочный резистор.

Сheapernеt-кабель.

Более дешевым, чем Ethernet-кабель является соединение Cheaper­net-кабель или, как его часто называют, тонкий (thin) Ethernet или 10BaseT2 . Это также 50-омный коаксиальный кабель со скоростью передачи информации в десять миллионов бит в секунду.

При соединении сегментов Сhеарегnеt-кабеля также требуются по­вторители. Вычислительные сети с Cheapernet-кабелем имеют небольшую стоимость и мини­мальные затраты при наращивании. Соединения сетевых плат производится с помо­щью широко используемых малогабаритных байо­нетных разъемов (СР-50). Дополни­тельное экранирование не требуется. Ка­бель присоединяется к ПК с помощью тройни­ковых соединителей (T-connectors).

Расстояние между двумя рабочими станциями без повторителей мо­жет состав­лять максимум 300 м, а общее расстояние для сети на Cheapernet-кабеля - около 1000 м. Приемопередатчик Cheapernet располо­жен на сетевой плате и как для гальваниче­ской развязки между адаптерами, так и для усиления внешнего сигнала

Оптоволоконные линии.

Наиболее дорогими являются оптопроводники, называемые также стекловоло­конным кабелем. Скорость распространения информации по ним достигает нескольких миллиардов бит в секунду. Допустимое удаление более 50 км. Внешнее воздействие помех практически отсутствует. На данный момент это наиболее дорогостоящее соединение для ЛВС. Применяются они там, где возникают электромагнитные поля помех или требу­ется передача информа­ции на очень большие расстояния без использования повтори­телей. Они обладают противоподспушивающими свойствами, так как техника ответв­ле­ний в оптоволоконных кабелях очень сложна. Оптопроводники объединя­ются в JIBC с помощью звездообразного соединения.

Платы сетевого адаптера выступают в качестве физического интерфейса, или соединения между компьютером и сетевым кабелем. Платы вставляются в специальные гнезда (слоты расширения) всех компьютеров и серверов. Чтобы обеспечить физическое соединение между компьютером и сетью, к соответствующему разъему, или порту, платы (после ее установки) подключают сетевой кабель. Назначение платы сетевого адаптера:

Подготовка данных, поступающих от компьютера, к передаче по сетевому кабелю;

Передача данных другому компьютеру;

Управление потоком данных между компьютером и кабельной системой;

Плата сетевого адаптера принимает данные из сетевого кабеля и переводит в форму, понятную центральному процессору компьютера.


Плата сетевого адаптера состоит из аппаратной части и встроенных программ, записанных в ПЗУ (постоянном запоминающем устройстве). Эти программы реализуют функции подуровней управления логической связью и управление доступом к среде канального уровня модели OSI.

Разветвитель служит центральным узлом в сетях с топологией «звезда».

При передаче по сетевому кабелю электрический сигнал постепенно ослабевает (затухает). И, искажается до такой степени, что компьютер перестает его воспринимать. Для предотвращения искажения сигнала применяется репитер, который усиливает (восстанавливает) ослабленный сигнал и передает его дальше по кабелю. Применяются репитеры в сетях с топологией «шина».


3.4. Типы построения сетей по методам передачи информации.

Локальная сеть Token Ring.

Этот стандарт разработан фирмой IBM. В качестве передающей среды применяется неэкранированная или экранированная витая пара (UPT или SPT) или оптоволокно. Скорость передачи данных 4 Мбит/с или 16Мбит/с. В качестве метода управле­ния доступом станций к передающей среде используется метод - маркерное кольцо (Тоken Ring). Основные положения этого метода:

Устройства подключаются к сети по топологии кольцо;

Все устройства, подключенные к сети, могут передавать данные, только получив разрешение на передачу (маркер);

В любой момент времени только одна станция в сети обладает таким правом.

В IВМ Тоkеn Ring используются три основных типа пакетов:

Пакет управление/данные (Data/Соmmand Frame);

Маркер (Token);

Пакет сброса (Аbort).

Пакет Управление/Данные . С помощью такого пакета выполняется передача данных или команд управления работой сети.

Маркер. Станция может начать передачу данных только после получения такого пакета, В одном кольце может быть только один маркер и, соответственно, только одна станция с правом передачи данных.

Пакет Сброса. Посылка такого пакета называет прекращение любых передач.

В сети можно подключать компьютеры по топологии звезда или кольцо.

Локальная сеть Ethernet.

Спецификацию Ethernet в конце семидесятых годов предложила компания Xerox Corporation. Позднее к этому проекту присоединились компании Digital Equipment Corporation (DEC) и Intel Corporation. В 1982 году была опубликована спецификация на Ethernet версии 2.0. На базе Ethernet и нститутом IEEE был разработан стандарт IEEE 802.3. Различия между ними незначительные.

Основные принципы работы.

На логическом уровне в Ethernet применяется топология шина:

Все устройства, подключенные к сети, равноправны, т.е. любая станция может начать передачу в любой момент времени (если передающая среда свободна);

Данные, передаваемые одной станцией, доступны всем станциям сети.

10BaseT

В 1990 году институт IEEE выпустил спецификацию 802.3 для построения сети Ethernet на основе витой пары. 10 BaseT (10 – скорость передачи 10 Мбит \ с., Base – узкополосная, Т – витая пара) – сеть Ethernet, которая для соединения компьютеров обычно использует неэкранированную витую пару (UTP). Большинство сетей этого типа строятся в виде звезды, но по системе передачи сигналов представляют собой шину, как и другие конфигурации Ethernet. Обычно разветвитель сети 10BaseT выступают как многопортовый репитер. Каждый компьютер подключается к другому концу кабеля, соединенного с разветвителем, и использует две пары проводов: одну для приема, другую для передачи.

Максимальная длина сегмента 10BaseT – 100 м. Минимальная длина кабеля – 2,5 м. ЛВС 10BaseT может обслуживать до 1024 компьютеров.

Для построения сети 10BaseT применяют:

Соединители RJ – 45 на концах кабеля.

Расстояние от рабочей станции до разветвителя не больше 100 м.

10Base2

В соответствии со спецификацией IEEE 802.3 эта топология называется 10Base2 (10 – скорость передачи 10 Мбит / с, Base – узкополосная передача, 2 – передача на расстояние, примерно в два раза превышающее 100 м (фактическое расстояние 185 м).

Сеть такого типа ориентирована на тонкий коаксиальный кабель, или тонкий Ethernet, с максимальной длиной сегмента 185 м. Минимальная длина кабеля 0,5 м. Кроме того существует ограничение на максимальное количество компьютеров, которое может быть подключено на 185 – метровом сегменте кабеля, - 30 штук.

Компоненты кабеля «тонкий Ethernet”:

BNC баррел – коннекторы (соединители);

BNC Т – коннекторы;

BNC – терминаторы.

Сети на тонком Ethrnet обычно имеют топологию «шина».Стандарты IEEE для тонкого Ethernet не предусматривают использование кабеля трансивера между Т – коннектором и момпьютером. Вместо этого Т – коннектор располагают непосредственно на плате сетевого адаптера.

BNC барелл – коннектор, соединяя сегменты кабеля, позволяет увеличить его общую длину. Однако их использование необходимо свести к минимуму, поскольку они ухудшают качество сигнала.

Сеть на тонком Ethernet – экономичный способ реализации сетей для небольших отделений для рабочих групп. Используемый в такого типа сетях кабель относительно не дорогой, прост в установке, легко конфигурируется. Сеть на тонком Ethernet может поддерживать до 30 узлов (компьютеров и принтеров) на один сегмент.

Сеть на тонком Ethernet может состоять максимум из пяти сегментов кабеля, соединенных четырьмя репитерами, но только к трем сегментам при этом могут быть подключены рабочие станции. Таким образом два сегмента остаются зарезервированными для репитеров, их называют межрепитерными связями. Такая конфигурация называется правило 5 – 4 – 3.

10Base5.

В соответствии со спецификацией IEEE эта топология называется 10Base5 (10 – скорость передачи 10 Мбит / с, Base – узкополосная передача, 5 – сегменты по 500 метров (5 раз по 100 метров)). Есть и другое ее название – стандартный Ethrnet.

Сети на толстом коаксиальном кабеле (толстый Ethrnet) обычно используют топологию “шина”. Толстый Ethrnet может поддерживать до 100 узлов (рабочих станций, репитеров и т. д.) на магистральный сегмент. Магистраль, или магистральный сегмент, - главный кабель, к которому присоединяются трансиверы с подключенными к ним рабочими станциями и репитерами. Сегмент толстого Ethernet может иметь длину 500 метров при общей длине сети 2500 метров. Расстояния и допуски для толстого Ethernet больше, чем для тонкого Ethernet.

Компоненты кабельной системы:

Трансиверы. Трансиверы, обеспечивая связь между компьютером и главным кабелем ЛВС, совмещены с «зубом вампира», соединенным с кабелем.

Кабели трансиверов. Кабель трансивера (ответвляющий кабель) соединяет кабель с платой сетевого адаптера.

DIX – коннектор, или AUI – коннектор. Этот коннектор расположен на кабеле трансивера.

Баррел – коннекторы и терминаторы.

Сеть на толстом Ethernet может состоять максимум из пяти магистральных сегментов, соединенных репитерами (по спецификации IEEE 802.3), но только к трем сегментам при этом могут быть подключены компьютеры. При вычислении общей длины кабеля «толстый Ethernet” длина кабеля трансивера не учитывается, т. е. в расчет принимают только длину сегмента кабеля “ толстый Ethernet”. Минимальное расстояние между соседними подключениями – 2,5 метра. В это расстояние не входит длина кабеля трансивера. Толстый Ethernet был разработан для построения ЛВС в рамках большого отдела лил всего здания.

Обычно в крупных сетях совместно используют толстый и тонкий Ethernet. Толстый Ethernet хорошо подходит в качестве магистрали, а для ответвляющихся сегментов применяют тонкий Ethernet. Вы наверно помните, что толстый Ethernet имеет медную жилу большего сечения и может передавать сигналы на большие расстояния, чем тонкий Ethernet. Трансивер соединяют с кабелем «толстый Ethernet”, AUI – коннектор кабеля трансивера включают в репитер. Ответвляющиеся сегменты «тонкого Ethernet» соединяют с репитером, а к ним уже подключаются компьютеры.

10BaseFL.

10BaseFL (10 – скорость передачи 10 Мбит / с, Base – узкополосная передача, FL – оптоволоконный кабель) представляет собой сеть Ethernet, в которой компьютеры и репитеры соединены между собой оптоволоконным кабелем.

Основная причина популярности 10BaseFL – возможность прокладывать кабель между репитерами на большие расстояния (например, между зданиями). Максимальная длина сегмента 10BaseFL – 2000 метров.


Для подключения кабелей используются 8-контактные модульные розетки (modular jack). На кабелях устанавливают с помощью специальных обжимных клещей 8-контактные разъемы RJ-45.

Рис.5 Модульная розетка Рис. 6 8-контактные разъемы RJ-45

При обмене данными между двумя устройствами приемник одного из устройств должен быть соединен с передатчиком другого и наоборот. Перекрутка пар (cross-over) обычно реализуется внутри одного из устройств при разводке кабеля в разъеме. Некоторые порты концентраторов и коммутаторов поддерживают возможность смены типа разводки проводников в разъеме (MDI-X или Normal). Сетевые адаптеры компьютеров обычно не позволяют менять тип разводки порта и обозначаются как устройства с портом MDI или Uplink.

На рисунках 7 и 8 показаны варианты соединения портов прямым и перекрученным (cross-over) кабелем.

Кабельные стыки должны обеспечивать не менее 750 циклов соединение-разъединение.


Категория патч-кабеля должна соответствовать категории кабеля в горизонтальной системе.

· Патч-кабели должны иметь многожильные проводники для обеспечения достаточной гибкости.

Прокладка кабелей

1. Во избежание обрыва проводников натяжение не должно превышать 110N.

2. Радиус изгиба не должен быть меньше 4 диаметров кабеля для горизонтальной проводки.

3. Избегайте передавливания кабелей, причинами которого могут быть:

Перекручивание кабелей при установке;

Неаккуратное подвешивание кабелей;

Слишком плотная укладка кабелей в канал;

Характеристики кабеля: диаметр 0.2", RG-58A/U 50 Ом;

Приемлемые разъемы: BNC;

Максимальная длина сегмента: 185 м;

Минимальное расстояние между узлами: 0.5 м;

Максимальное число узлов в сегменте: 30

Спецификации кабеля приведены в таблице 1.

Таблица 1. Спецификации кабелей 10BASE2 (ThinNet) RG 58 A/U и RG 58 C/U

Таблица 2. Электрические спецификации кабелей категории 3, 4 и 5

Волновое сопротивление: 50 Ом

Максимальная длина сегмента: 500 метров

Минимальное расстояние между узлами: 2.5 м

Максимальное число узлов в сегменте: 100

Кабели AUI используются для соединения портов AUI с магистралями из толстого коаксиального кабеля. Максимальная длина кабеля составляет 50 метров.

Таблица 3. Спецификации кабелей AUI

Заключение

В данной работе были рассмотрены основные составные части ЛВС. На сегодняшний день разработка и внедрение ИВС является одной из самых интересных и важных задач в области информационных технологий. Все больше возрастает необходимость в оперативной информации, постоянно растет трафик сетей всех уровней. В связи с этим появляются новые технологии передачи информации в ИВС. Среди последних открытий следует отметить возможность передачи данных с помощью обычных линий электропередач, при чем данный метод позволяет увеличить не только скорость, но и надежность передачи. Сетевые технологии очень быстро развиваются, в связи с чем они начинают выделяться в отдельную информационную отрасль. Ученные прогнозируют, что ближайшим достижением этой отрасли будет полное вытеснение других средств передачи информации (телевидение, радио, печать, телефон и т.д.). На смену этим «устаревшим» технологиям придет компьютер, он будет подключен к некоему глобальному потоку информации, возможно даже это будет Internet, и из этого потока можно будет получить любую информацию в любом представлении. Хотя нельзя утверждать, что все будет именно так, поскольку сетевые технологии, как и сама информатика – самые молодые науки, а все молодое – очень непредсказуемо.

Список литературы:

1. Н. Малых.Локальные сети для начинающих: Учебник. – М.: ИНФРА-М, 2000.

2. Н. Олифер, В. Олифер.Базовые технологии локальных сетей.Учебник. – М.: Диалог – МИФИ, 1996.

3. Компьютерные сети.Учебный курс/Пер. с англ. – М.: Издательский отдел «Русская Редакция» ТОО «ChannelTradingLtd.», 1997.

4. Бэрри Нанс. Компьютерные сети: Пер. с англ. – М: Восточная книжная компания, 1996.


Приложение

Вариант 5. .

Вариант 5.

Таблица 5

Оборотная ведомость по учету

диетических продуктов питания

Наименование продукта Единица измерения Входящий остаток Обороты Исходящий остаток
Приход Расход

Само по себе понятие локальной сети означает объединение нескольких компьютеров или компьютерных устройств в единую систему для обмена информацией между ними, а так же совместного использования их вычислительных ресурсов и периферийного оборудования. Таким образом, локальные сети позволяют:

Обмениваться данными (фильмами, музыкой, программами, играми и прочим) между членами сети. При этом для просмотра фильмов или прослушивания музыки совершенно не обязательно записывать их к себе на жесткий диск. Скорости современных сетей позволяют это делать прямо с удаленного компьютера или мультимедийного устройства.

Подключать одновременно сразу несколько устройств к глобальной сети Интернет через один канал доступа. Наверное, это одна из самых востребованных функций локальных сетей, ведь в наши дни список оборудования, в котором может использоваться соединение с всемирной паутиной, очень велик. Помимо всевозможной компьютерной техники и мобильных устройств, теперь полноправными участниками сети стали телевизоры, DVD/Blu-Ray проигрыватели, мультимедиа плееры и даже всевозможная бытовая техника, начиная от холодильников и заканчивая кофеварками.

Совместно использовать компьютерное периферийное оборудование, такое как принтеры, МФУ, сканеры и сетевые хранилища данных (NAS).

Совместно использовать вычислительные мощности компьютеров участников сети.При работе с программами, требующих сложных вычислений, например как 3D-визуализация, для увеличения производительности и ускорения обработки данных, можно задействовать свободные ресурсы других компьютеров состоящих в сети. Таким образом, имея несколько слабых машин объединённых в локальную сеть, можно использовать их суммарную производительность для выполнения ресурсоемких задач.

Как видите, создание локальной сети даже в рамках одной квартиры, может принести немало пользы. Тем боле, что наличие дома сразу нескольких устройств, требующих подключения к интернету, уже давно не редкость и объединение их в общую сеть, является актуальной задачей для большинства пользователей.

Основные принципы построения локальной сети

Чаще всего в локальных сетях используются два основных типа передачи данных между компьютерами – по проводам, такие сети называются кабельными и используют технологию Ethernet, а так же с помощью радиосигнала по беспроводным сетям, построенных на базе стандарта IEEE 802.11, который более известен пользователям под названием Wi-Fi.

На сегодняшний день проводные сети до сих пор обеспечивают самую высокую пропускную способность, позволяя пользователям обмениваться информацией со скоростью до 100 Мбит/c (12 Мб/c) или до 1 Гбит/с (128 Мб/с) в зависимости от используемого оборудования (Fast Ethernet или Gigabit Ethernet). И хотя современные беспроводные технологии чисто теоретически тоже могут обеспечить передачу данных до 1.3 Гбит/c (стандарт Wi-Fi 802.11ac), на практике эта цифра выглядит гораздо скромнее и в большинстве случаев не превышает величину 150 – 300 Мбит/с. Виной тому служит дороговизна высокоскоростного Wi-Fi оборудования и низкий уровень его использования в нынешних мобильных устройствах.

Как правило, все современные сети устроены по одному принципу: компьютеры пользователей (рабочие станции), оборудованные сетевыми адаптерами, соединяются между собой через специальные коммутационные устройства, в качестве которых могут выступать: маршрутизаторы (роутеры), коммутаторы (хабы или свитчи), точки доступа или модемы. Более подробно об их отличиях и назначениях мы поговорим ниже, а сейчас просто знайте, что без этих электронных коробочек, объединить сразу несколько компьютеров в одну систему не получится. Максимум чего можно добиться, это создать мини-сеть из двух ПК, соединив их, друг с другом.

Не нужно забывать, что локальная сеть — это «изделие» с индивидуальными решениями для каждого конкретного случая, которое не терпит непродуманного подхода. Именно поэтому, как любое качественное изделие, локальная сеть должна строиться профессионалами . Давайте далее рассмотрим, что нам нужно знать для проведения качественного монтажа.

В самом начале необходимо определить основные требования к вашей будущей сети и ее масштаб. Ведь от количества устройств, их физического размещения и возможных способов подключения, напрямую будет зависеть выбор необходимого оборудования. Чаще всего домашняя локальная сеть является комбинированной и в ее состав может входить сразу несколько типов коммутационных устройств. Например, стационарные компьютеры могут быть подключены к сети с помощью проводов, а различные мобильные устройства (ноутбуки, планшеты, смартфоны) – через Wi-Fi.

Для примера рассмотрим схему одного из возможных вариантов домашней локальной сети. В нем будут участвовать электронные устройства, предназначенные для различных целей и задач, а так же использующих разный тип подключения.

Как видно из рисунка, в единую сеть могут объединяться сразу несколько настольных компьютеров, ноутбуков, смартфонов, телевизионных приставок (IPTV), планшетов и медиаплееров и прочих устройств. Теперь давайте разбираться, какое же оборудование вам понадобится, для построения собственной сети.

Сетевая карта

Сетевая плата является устройством, позволяющим компьютерам связываться друг с другом и обмениваться данными в сети. Все сетевые адаптеры по типу можно разделить на две большие группы – проводные и беспроводные.

Проводные сетевые платы позволяют подключать электронные устройства к сети с использованием технологии Ethernet при помощи кабеля, а в беспроводных сетевых адаптерах используется радио технология Wi-Fi.

Как правило, все современные настольные компьютеры уже оснащены встроенными в материнскую плату сетевыми картами Ethernet, а все мобильные устройства (смартфоны, планшеты) — сетевыми адаптерами Wi-Fi. При этом ноутбуки и ультрабуки в большинстве своем оснащаются обоими сетевыми интерфейсами сразу.

Несмотря на то, что в подавляющем большинстве случаев, компьютерные устройства имеют встроенные сетевые интерфейсы, иногда возникает необходимость в приобретении дополнительных плат, например, для оснащения системного блока беспроводным модулем связи Wi-Fi.

По своей конструктивной реализации отдельные сетевые карты делятся на две группы – внутренние и внешние. Внутренние карты предназначены для установки в настольные компьютеры с помощью интерфейсов и соответствующих им разъемов PCI и PCIe. Внешние платы подключаются через разъемы USB или устаревающие PCMCIA (только ноутбуки).

Маршрутизатор (Роутер)

Основным и самым главным компонентом домашней локальной сети является роутер или маршрутизатор – специальная коробочка, которая позволяет объединять несколько электронных устройств в единую сеть и подключать их к Интернету через один единственный канал, предоставляемый вам провайдером.

Роутер – это многофункциональное устройство или даже миникомпьютер со своей встроенной операционной системой, имеющий не менее двух сетевых интерфейсов. Первый из них — LAN (Local Area Network) или ЛВС (Локальная Вычислительная Сеть) служит для создания внутренней (домашней) сети, которая состоит из ваших компьютерных устройств. Второй – WAN (Wide Area Network) или ГВС (Глобальная Вычислительная Сеть) служит для подключения локальной сети (LAN) к другим сетям и всемирной глобальной паутине — Интернету.

Основным назначением устройств подобного типа является определение путей следования (составление маршрутов) пакетов с данными, которые пользователь посылает в другие, более крупные сети или запрашивает из них. Именно с помощью маршрутизаторов, огромные сети разбиваются на множество логических сегментов (подсети), одним из которых является домашняя локальная сеть. Таким образом, в домашних условиях основной функцией роутера можно назвать организацию перехода информации из локальной сети в глобальную, и обратно.

Еще одна важная задача маршрутизатора – ограничить доступ к вашей домашней сети из всемирной паутины. Наверняка вы вряд будете довольны, если любой желающий сможет подключаться к вашим компьютерам и брать или удалять из них все что ему заблагорассудится.

Что бы этого не происходило, поток данных, предназначенный для устройств, относящихся к определенной подсети, не должен выходить за ее пределы. Поэтому, маршрутизатор из общего внутреннего трафика, создаваемого участниками локальной сети, выделяет и направляет в глобальную сеть только ту информацию, которая предназначена для других внешних подсетей. Таким образом, обеспечивается безопасность внутренних данных и сберегается общая пропускная способность сети.

Главный механизм, который позволяет роутеру ограничить или предотвратить обращение из общей сети (снаружи) к устройствам в вашей локальной сети получил название NAT (Network Address Translation). Он же обеспечивает всем пользователям домашней сети доступ к Интернету, благодаря преобразованию несколько внутренних адресов устройств в один публичный внешний адрес, который предоставляет вам поставщик услуг интернета. Все это дает возможность компьютерам домашней сети спокойно обмениваться информацией между собой и получать ее из других сетей. В то же время, данные хранящиеся в них остаются недоступными для внешних пользователей, хотя в любой момент доступ к ним может быть предоставлен по вашему желанию.

В общем, маршрутизаторы можно разделить на две большие группы — проводные и беспроводные. Уже по названиям видно, что к первым все устройства подключаются только с помощью кабелей, а ко вторым, как с помощью проводов, так и без них с использованием технологии Wi-Fi. Поэтому, в домашних условиях, чаще всего используются именно беспроводные маршрутизаторы, позволяющие обеспечивать интернетом и объединять в сеть компьютерное оборудование, использующее различные технологии связи.

Для подключения компьютерных устройств с помощью кабелей, роутер имеет специальные гнезда, называемые портами. В большинстве случаев на маршрутизаторе имеется четыре порта LAN для подсоединения ваших устройств и один WAN-порт для подключения кабеля провайдера.

Во многих случаях, роутер может оказаться единственным компонентом, необходимым для построения собственной локальной сети, так как в остальных попросту не будет нужды. Как мы уже говорили, даже самый простой маршрутизатор позволяет при помощи проводов подключить до четырех компьютерных устройств. Ну а количество оборудования, получающего одновременный доступ к сети с помощью технологии Wi-Fi, может и вовсе исчисляться десятками, а то и сотнями.

Если все же в какой-то момент количества LAN-портов роутера перестанет хватать, то для расширения кабельной сети к маршрутизатору можно подсоединить один или несколько коммутаторов (речь о них пойдет ниже), выполняющих функции разветвителей.

Модем

В современных компьютерных сетях модемом называют устройство обеспечивающее выход в интернет или доступ к другим сетям через обычные проводные телефонные линии (класс xDSL) или с помощью беспроводных мобильных технологий (класс 3G).

Условно модемы можно разделить на две группы. К первой относятся те, которые соединяются с компьютером через интерфейс USB и обеспечивают выходом в сеть только один конкретный ПК, к которому непосредственно происходит подключение модема. Во второй группе для соединения с компьютером используется уже знакомые нам LAN и/или Wi-Fi интерфейсы. Их наличие говорит о том, что модем имеет встроенный маршрутизатор. Такие устройства часто называют комбинированными, и именно их следует использовать для построения локальной сети.

При выборе DSL-оборудования пользователи могут столкнуться с определенными трудностями, вызванными путаницей в его названиях. Дело в том, что зачастую в ассортименте компьютерных магазинов, соседствуют сразу два очень похожих класса устройств: модемы со встроенными роутерами и роутеры со встроенными модемами. В чем же у них разница?

Каких-либо ключевых отличий эти две группы устройств практически не имеют. Сами производители позиционируют маршрутизатор со встроенным модемом как более продвинутый вариант, наделенный большим количеством дополнительных функций и обладающий улучшенной производительностью. Но если вас интересуют только базовые возможности, например, такие как, подключение к интернету всех компьютеров домашней сети, то особой разницы между модемами-маршрутизаторами и маршрутизаторами где, в качестве внешнего сетевого интерфейса используется DSL-модем, нет.

Итак, подытожим, современный модем, с помощью которого можно построить локальную сеть – это, по сути, маршрутизатор, у которого в качестве внешнего сетевого интерфейса выступает xDSL или 3G-модем.

Коммутатор

Коммутатор или свитч (switch) служит для соединения между собой различных узлов компьютерной сети и обмена данными между ними по кабелям.

В роли этих узлов могут выступать как отдельные устройства, например настольный ПК, так уже и объединенные в самостоятельный сегмент сети целые группы устройств. В отличие от роутера, коммутатор имеет только один сетевой интерфейс – LAN и используется в домашних условиях в качестве вспомогательного устройства преимущественно для масштабирования локальных сетей.

Для подключения компьютеров с помощью проводов, как и маршрутизаторы, коммутаторы так же имеют специальные гнезда-порты. В моделях, ориентированных на домашнее использование, обычно их количество равняется пяти или восьми. Если в какой-то момент для подключения всех устройств количества портов коммутатора перестанет хватать, к нему можно подсоединить еще один свитч. Таким образом, можно расширять домашнюю сеть сколько угодно.

Коммутаторы разделяют на две группы: управляемые и неуправляемые. Первые, что следует из названия, могут управляться из сети с помощью специального программного обеспечения. Имея продвинутые функциональные возможности, они дороги и не используются в домашних условиях. Неуправляемые свитчи распределяют трафик и регулируют скорость обмена данными между всеми клиентами сети в автоматическом режиме. Именно эти устройства являются идеальными решениями для построения малых и средних локальных сетей, где количество участников обмена информацией невелико.

В зависимости от модели, коммутаторы могут обеспечить максимальную скорость передачи данных равную либо 100 Мбит/с (Fast Ethernet), либо 1000 Мбит/c (Gigabit Ethernet). Гигабитные свитчи лучше использовать для построения домашних сетей, в которых планируется часто передавать файлы большого размера между локальными устройствами.

Беспроводная точка доступа

Для обеспечения беспроводного доступа к интернету или ресурсам локальной сети, помимо беспроводного маршрутизатора можно использовать и другое устройство, называемое беспроводной точкой доступа.

В отличие от роутера, данная станция не имеет внешнего сетевого интерфейса WAN и оснащается в большинстве случаев только одним портом LAN для подключения к роутеру или коммутатору. Таким образом, точка доступа вам понадобится в том случае, если в вашей локальной сети используется обычный маршрутизатор или модем без поддержки Wi-Fi.

Использование же дополнительных точек доступа в сети с беспроводным маршрутизатором может быть оправдано в тех случаях, когда требуется большая зона покрытия Wi-Fi. Например, мощности сигнала одного лишь беспроводного роутера может не хватить, что бы покрыть полностью всю площадь в крупном офисе или многоэтажном загородном доме.

Так же точки доступа можно использовать для организации беспроводных мостов, позволяющих соединять между собой с помощью радиосигнала отдельные устройства, сегменты сети или целые сети в тех местах, где прокладка кабелей нежелательна или затруднительна.

Сетевой кабель, коннекторы, розетки

Несмотря на бурное развитие беспроводных технологий, до сих пор многие локальные сети строятся с помощью проводов. Такие системы имеют высокую надежность, отличную пропускную способность и сводят к минимуму возможность несанкционированного подключения к вашей сети извне.

Для создания проводной локальной сети в домашних и офисных условиях используется технология Ethernet, где сигнал передается по так называемой «витой паре» (TP- Twisted Pair) – кабелю, состоящему из четырех медных свитых друг с другом (для уменьшения помех) пар проводов.

При построении компьютерных сетей используется преимущественно неэкранированный кабель категории CAT5, а чаще его усовершенствованная версия CAT5e. Кабели подобной категории позволяют передавать сигнал со скоростью 100 Мбит/c при использовании только двух пар (половины) проводов, и 1000 Мбит/с при использовании всех четырех пар.

Для подключения к устройствам (маршрутизаторам, коммутаторам, сетевым картам и так далее) на концах витой пары используются 8-контактные модульные коннекторы, повсеместно называемые RJ-45 (хотя их правильное название — 8P8C).

В зависимости от вашего желания, вы можете, либо купить в любом компьютерном магазине уже готовые (с обжатыми разъемами) сетевые кабели определённой длинны, называемые «патч-кордами», либо по отдельности приобрести витую пару и разъемы, а затем самостоятельно изготовить кабели необходимого размера в нужном количестве.

Используя кабели для объединения компьютеров в сеть, конечно можно подключать их напрямую от коммутаторов или маршрутизаторов к разъемам на сетевых картах ПК, но существует и другой вариант – использование сетевых розеток.

В этом случае, один конец кабеля соединяется с портом коммутатора, а другой с внутренними контактами розетки, во внешний разъем которой впоследствии можно уже подключать компьютерные или сетевые устройства.

Сетевые розетки могут быть как встраиваемыми в стену, так и монтируемыми снаружи. Применение розеток вместо торчащих концов кабелей придаст более эстетичный вид вашему рабочему месту. Так же розетки удобно использовать в качестве опорных точек различных сегментов сети. Например, можно установить коммутатор или маршрутизатор в коридоре квартиры, а затем от него капитально развести кабели к розеткам, размещенным во всех необходимых помещениях. Таким образом, вы получите несколько точек, расположенных в разных частях квартиры, к которым можно будет в любой момент подключать не только компьютеры, но и любые сетевые устройства, например, дополнительные коммутаторы для расширения вашей домашней или офисной сети.

Еще одной мелочью, которая вам может понадобиться при построении кабельной сети является удлинитель, который можно использовать для соединения двух витых пар с уже обжатыми разъемами RJ-45.

Помимо прямого назначения, удлинители удобно применять в тех случаях, когда конец кабеля заканчивается не одним разъемом, а двумя. Такой вариант возможен при построении сетей с пропускной способностью 100 Мбит/c, где для передачи сигнала достаточно использования только двух пар проводов.

Так же для подключения к одному кабелю сразу двух компьютеров без использования коммутатора можно использовать сетевой разветвитель. Но опять же стоит помнить, что в этом случае максимальная скорость обмена данными будет ограничена 100 Мбит/c.

Более подробно об обжимке витой пары, подключения розеток и характеристиках сетевых кабелей читайте в специальном материале.

Топология сети

Теперь, когда мы познакомились с основными компонентами локальной сети, пришло время поговорить о топологии. Если говорить простым языком, то сетевая топология – это схема, описывающая месторасположения и способы подключения сетевых устройств.

Существует три основных вида топологии сети: Шина, Кольцо и Звезда. При шинной топологии все компьютеры сети подключаются к одному общему кабелю. Для объединения ПК в единую сеть с помощью топологии «Кольцо», осуществляется их последовательное соединение между собой, при этом последний компьютер подключается к первому. При топологии «Звезда» каждое устройство подсоединяется к сети через специальный концентратор с помощью отдельного кабеля.

Наверное, внимательный читатель уже догадался, что для построения домашней или небольшой офисной сети преимущественно используется топология «Звезда», где в качестве устройств-концентраторов используются маршрутизаторы и коммутаторы.

Создание сети с применением топологии «Звезда» не требует глубоких технических знаний и больших финансовых вливаний. Например, с помощью коммутатора, стоимостью 250 рублей можно за несколько минут объединить в сеть 5 компьютеров, а при помощи маршрутизатора за пару тысяч рублей и вовсе построить домашнюю сеть, обеспечив несколько десятков устройств доступом к интернету и локальным ресурсам.

Еще одними несомненными преимуществами данной топологии являются хорошая расширяемость и простота модернизации. Так, ветвление и масштабирование сети достигается путем простого добавления дополнительных концентраторов с необходимыми функциональными возможностями. Так же в любой момент можно изменять физическое месторасположение сетевых устройств или менять их местами, чтобы добиться более практичного использования оборудования и уменьшить количество, а так же длину соединительных проводов.

Несмотря на то, что топология «Звезда» позволяет достаточно быстро изменять сетевую структуру, расположения маршрутизатора, коммутаторов и других необходимых элементов необходимо продумать заранее, сообразуясь с планировкой помещения, количеством объединяемых устройств и способами их подключения к сети. Это позволит минимизировать риски, связанные с покупкой неподходящего или избыточного оборудования и оптимизировать сумму ваших финансовых затрат.

Заключение

В этом материале мы рассмотрели общие принципы построения локальных сетей, основное оборудование, которое при этом используется и его назначение. Теперь вы знаете, что главный элементом практически любой домашней сети является маршрутизатор, который позволяет объединять в сеть множество устройств, использующих как проводные (Ethernet), так и беспроводные (Wi-Fi) технологии, при этом обеспечивая всем им подключение к интернету через один единственный канал.

В качестве вспомогательного оборудования для расширения точек подключения к локальной сети с помощью кабелей, используются коммутаторы, по сути, являющиеся разветвителями. Для организации же беспроводных соединений служат точки доступа, позволяющие с помощью технологии Wi-Fi не только подключать без проводов к сети всевозможные устройства, но и режиме «моста» соединять между собой целые сегменты локальной сети.

Что бы точно понимать, сколько и какого оборудования вам необходимо будет приобрести для создания будущей домашней сети, обязательно сначала составьте ее топологию. Нарисуйте схему расположения всех устройств-участников сети, которым потребуется кабельное подключение. В зависимости от этого выберите оптимальную точку размещения маршрутизатора и при необходимости, дополнительных коммутаторов. Каких-либо единых правил здесь нет, так как физическое расположение роутера и свитчей зависит от многих факторов: количества и типа устройств, а так же задач, которые на них будут возложены; планировки и размера помещения; требований к эстетичности вида коммутационных узлов; возможностей прокладки кабелей и прочих.

Итак, как только у вас появится подробный план вашей будущей сети, можно начинать переходить к подбору и покупке необходимого оборудования, его монтажу и настройке. Но на эти темы мы поговорим уже в наших следующих материалах.

В современном мире локальные сети стали не просто нужными - они фактически необходимы для достижения хорошего уровня производительности труда. Однако прежде чем начать пользоваться такой сетью, следует ее создать и настроить. Оба этих процесса достаточно непростые и требуют максимального сосредоточения, в особенности первый из них. Неправильно спроектированная и настроенная ЛВС не будет работать вовсе или же станет функционировать совершенно не так, как необходимо, поэтому создание локальной сети должно стать центром сосредоточения внимания человека, занимающегося этим.

Что представляет собой локальная сеть

Как правило, создание подобных систем связи вызвано необходимостью коллективного использования данных пользователями, которые работают на удаленных вычислительных машинах. ЛВС не только дает возможность почти мгновенного обмена информацией и одновременной работы с файлами, но и позволяет использовать удаленно сетевые принтеры и прочие устройства.

Локальная сеть - это полный комплекс программных и аппаратных ресурсов, направленный на создание единого информационного пространства. Фактически это некоторое количество компьютеров, расположенных на расстоянии друг от друга и соединенных линией связи - кабелем. Главным отличием ЛВС от других типов сетей является небольшое расстояние, на котором находятся рабочие станции.

Предпроектная подготовка и проектирование

Перед тем как создать локальную сеть, ее необходимо сначала спроектировать, то есть спланировать процесс ее создания. Этот этап - один из самых значимых, так как ЛВС включает в себя огромное количество компонентов и узлов.

Первоначально составляется техническое задание на основе первичных данных, определяя несколько моментов:

  • Функции и задачи ЛВС.
  • Выбранная топология.
  • Список доступного оборудования.

Только определившись с этими пунктами, можно приступить к проектировке. Сам проект должен содержать схемы ЛВС, точки расстановки сетевого оборудования, список необходимых программных и аппаратных средств.

Локальная сеть - это сложный механизм, но если она спроектирована правильно, а оборудование выбрано в соответствии с требованиями, в таком случае вероятность появления проблем в эксплуатации механизма связи становится минимальной.

Необходимые аппаратные средства

Существует перечень оборудования, без которого ни одна ЛВС функционировать не сможет. В него входят:

  • Линии передачи данных. Чаще всего используется коаксиальный кабель и оптоволокно. При этом длина коаксиала не может превышать нескольких сотен метров, однако при необходимости протяжения сети на большие расстояния используют специальные репитеры - повторители сигнала, не дающие ему затухнуть.
  • Коммуникационное оборудование: сетевые карты (устройства, выполняющие дуплексный обмен информацией между компьютером и средой передачи данных), концентраторы (разбивают сеть на отдельные сегменты, структурируя сеть физически), маршрутизаторы (берут на себя выбор маршрута передачи пакетов), коммутаторы (логически разделяют ЛВС на сегменты, объединяя несколько физических цепей), репитеры (обеспечивают восстановление сигнала, позволяя увеличить длину передающей среды), трансиверы (усиливают сигнал и преобразовывают его в другие виды, позволяя пользоваться разными средами передачи данных).

Перечень программных средств

Ни одна ЛВС не обойдется без программного обеспечения. Обязательные программы для локальной сети включают в себя:

  • Операционные системы рабочих узлов. Наиболее часто используемой ОС остается Windows 7, хотя и Windows XP также не сдает позиций.
  • Сетевые ОС, устанавливаемые на серверах, представляют собой основу ЛВС, так как настроить локальную сеть без них невозможно. Именно эти программные средства берут на себя управление всеми потоками данных между главными узлами и второстепенными, обеспечивая возможность коллективного доступа к ресурсам сетей. Как правило, используются ОС корпорации Microsoft: Windows Server 2003 или 2008.

  • Сетевые службы и приложения, предоставляющие пользователям возможность доступа к удаленным файлам, распечатки документов на сетевом принтере, просмотра рабочих узлов, находящихся в сети, а также отправки электронных сообщений. Реализация таких служб осуществляется при помощи программного обеспечения.

Создание и монтаж ЛВС

Монтажно-наладочные работы занимают больше всего времени, так как создать локальную сеть предстоит в несколько этапов:

  • Перед тем как начать монтаж линий связи и коммутационных устройств, необходимо предварительно подготовить помещение.
  • Далее можно осуществить прокладку кабеля, а также установку нужного оборудования.
  • К кабельной линии связи следует подключить устройства сервера и рабочих станций.
  • После этого проводится установка и настройка программных средств.

Монтаж кабеля и оборудования обладает рядом особенностей, поэтому, если возникают сложности с тем, как подключить локальную сеть, лучше решение этого вопроса доверить специалистам.

Объединение двух компьютеров в ЛВС

В некоторых случаях может понадобиться объединение двух компьютеров в одну сеть, к примеру, для создания общего информационного пространства. Сделать это не очень сложно, если выполнять определенный алгоритм действий:

  • При необходимости установить сетевые адаптеры в оба компьютера, не забывая о драйверах.

  • Приобрести обжатый сетевой кабель для соединения. При наличии необходимых знаний и навыков обжимку можно выполнить и самостоятельно - локальная сеть двух компьютеров от этого не станет худшего качества.
  • Соединить обе рабочих станции линией связи.
  • Настроить ЛВС в определенном порядке.

Алгоритм настройки локальной сети между двумя компьютерами для Windows 7

  • Выбрать меню «Пуск», после чего, нажав правой кнопкой мыши на значке «Компьютер», войти в подменю «Свойства».
  • Нужно найти в списке «Имя компьютера и домена», а затем выбрать пункт с изменением параметров.
  • Рабочее название вычислительной машины необходимо изменить, нажав на соответствующие значки.
  • Имя группы должно остаться без изменений - «Workgroup», однако имена компьютера меняются на «pc1» и «pc2» для первого и второго абонента соответственно.
  • Теперь можно щелкнуть «OK» и перезапустить компьютер.

В большинстве случаев может понадобиться присвоить каждому узлу индивидуальный IP-адрес:

  • В меню «Пуск» выбрать «Настройку», а затем «Сетевые подключения».
  • Правым кликом мыши вызвать подменю «Свойства» у значка «Подключение по локальной сети».
  • Во вкладке «Общие» выбрать «Свойства» пункта «Протокол Интернета».
  • Сделать активной строчку «Использовать следующий IP-адрес» и ввести значение 192.168.0.100. После этого сохранить произведенные изменения.

Локальная сеть и интернет

Рабочие узлы, объединенные в ЛВС, можно подключить к интернету. Локальная сеть, интернет к которой можно подключить двумя способами, будет работать с разделенной надвое скоростью.

Первым способом подключения является использование роутера, которому присваивается идентификационный IP-адрес. А во втором случае можно воспользоваться беспроводным подключением.

В данном случае локальная сеть - это взаимодействие двух компьютеров, ведущего и ведомого, поэтому IP-адрес прописывается в шлюзе главного из них, предварительно подсоединенного ко всемирной сети.

В случае если ЛВС базируется на использовании сервера, каждая рабочая станция должна иметь индивидуальный IP-адрес, а в настройках браузера указывается прокси-сервер, через который осуществляется выход в интернет.

Беспроводная локальная сеть

Беспроводная локальная сеть - это подвид ЛВС, который для передачи информации использует высокочастотные радиоволны. WLAN является прекрасной альтернативой обычной кабельной системе связи, обладая рядом преимуществ:

  • Улучшение производительности труда. WLAN дает возможность пользоваться интернетом и при этом не быть привязанным к одному помещению. Можно свободно менять свое местоположение, не теряя подключения к интернету.
  • Легкий монтаж и настройка, экономия финансов и надежность - все эти факторы обусловлены отсутствием кабельной линии связи.
  • Гибкость. Установка беспроводной сети реальна там, где нет возможности протянуть кабель.
  • Возможность расширения. Масштабируемость сети существенно упрощена благодаря беспроводным сетевым адаптерам, которые можно установить на любой рабочий узел.

У WLAN имеется определенная дальность действия, которая зависит от характеристик сетевых устройств и помехозащищенности здания. Как правило, диапазон действия радиоволн достигает 160 м.

Необходимое оборудование для создания беспроводной локальной сети

Чтобы присоединить другие рабочие станции к сети, используется точка доступа. Это устройство оснащено специальной антенной, управляющей дуплексной передачей данных (отправкой и передачей) с помощью радиосигналов. Такая точка может передавать сигнал на расстоянии до 100 м в помещении и до 50 км на открытой территории.

Точки доступа существенно расширяют вычислительную мощность всей системы связи, позволяя пользователям свободно перемещаться между каждой из них, не теряя соединения с ЛВС или интернетом. Фактически эти радиоточки выступают в роли концентраторов, обеспечивая соединение с сетью.

Использование точек доступа позволяет увеличивать масштаб всей беспроводной локальной сети, просто добавляя новые устройства. Количество абонентов, которое может выдержать одна радиоточка, зависит в целом от загруженности сети, так как трафик делится поровну между каждым из пользователей.

Беспроводная локальная сеть: Windows 7. Алгоритм настройки

Сначала следует подготовить ADSL-модем с технологией WiFi, а также клиентские точки с подключенными к ним беспроводными адаптерами. После этого можно приступить к построению беспроводной ЛВС:

  • Подключить модем к электрической сети.
  • На клиентском устройстве запустить мастер установки WLAN.
  • В перечне найденных беспроводных сетей выбрать идентификатор SSID.

Настройка точки доступа:

  • Первым делом нужно настроить свойства протокола TCP/IP, указав IP-адрес и маску подсети.
  • После этого указать значение сервера DNS, так как настроить локальную сеть полноценно без этого параметра не представляется возможным. В большинстве случаев достаточно сделать активным пункт об автоматическом назначении адреса DNS.
  • Обязательна и настройка параметров самой беспроводной сети, в которой немаловажным является обеспечение безопасности.
  • На этом этапе необходимо настроить подключение к сети интернет и фильтрацию для файерволла Windows 7.
  • И в последнюю очередь производится подключение проводов и проверка работоспособности сети WLAN.

Для создания оптимального информационного пространства можно комбинировать виды сетей - кабельную и беспроводную, позволяя использовать преимущества каждой из них на благо предприятия. Однако важно помнить о том, что в наше время все больше применяются именно беспроводные сети WLAN, обладающие всеми плюсами кабельных сетей и лишенные их недостатков.

После окончания создания и настройки локальной сети важно предусмотреть ее администрирование и возможность технического обслуживания. Даже если монтаж ЛВС выполнен идеально, в ходе ее эксплуатации почти неизбежно происходят различные неполадки в работе аппаратного или программного обеспечения, именно поэтому техобслуживание должно иметь регулярный характер.

Определимся с отправными моментами: небольшая компания, пускай примерно 15-50 сотрудников. Как правило - квалифицированного сетевого специалиста нет. И скорее всего именно "выделенного" для работы с сетью, администратора сети по штату. Давайте условимся - свой специалист, все-таки необходим. И ему надо платить деньги, причем - хорошие деньги (ужас какой, да? вот новость-то для многих директоров). Попробую в этой статье (возможно, с продолжением) выступить в роли администратора сети такой небольшой фирмы. Итак, строим сеть сами. Почему нет? Есть много аргументов "против" "самопальщины", и все они верны (если, конечно, это не откровенная "лапша" от потенциального подрядчика). Но, все-таки, можно и самому. Аргументов "за" тоже хватает. Не будем здесь их приводить - считаем, что решили делать сами. Мы будем делать не новомодные радио-, Wi-Fi и прочие сети, а недорогую, но качественную кабельную сеть традиционного проводного типа для повседневной работы фирмы. Однако, надо понимать, что работу должен выполнять специалист (или несколько).

Вступление

Определимся с отправными моментами: небольшая компания, пускай примерно 15-50 сотрудников. Как правило - квалифицированного сетевого специалиста нет. И скорее всего именно "выделенного" для работы с сетью, администратора сети по штату. Если есть - мастер на все руки, причем часто вынужден заниматься каким-то "срочным" делом вроде установки Windows или драйверов на какой-нибудь компьютер, вместо работы с сетью. Вместе с другими "компьютерщиками"(если они есть). Сеть работает? Пускай через пень колоду, ну и ладно, чуть позже займется (займемся).


Давайте условимся - свой специалист, все-таки необходим. И ему надо платить деньги, причем - хорошие деньги (ужас какой, да? вот новость-то для многих директоров). Попробую в этой статье (возможно, с продолжением) выступить в роли администратора сети такой небольшой фирмы.

Исходные данные

Итак, строим сеть сами. Почему нет? Есть много аргументов "против" "самопальщины", и все они верны (если, конечно, это не откровенная "лапша" от потенциального подрядчика). Но, все-таки, можно и самому. Аргументов "за" тоже хватает. Не будем здесь их приводить - считаем, что решили делать сами.

Однако, надо понимать, что работу должен выполнять специалист (или несколько). Нельзя тренировать («хоть плохонький, но свой») и растить своего специалиста таким методом. Своего можно отдать в практику человеку, выполняющему работы (бурение дыр перфоратором в стенах и крепление кабель-канала не будем брать во внимание - это должен уметь любой мужик).

Еще один фактор, добавим так сказать, "перчику"- наша фирма, помимо офиса, имеет магазин и склад, которые достаточно удалены.

Мы будем делать не новомодные радио-, Wi-Fi и прочие сети, а недорогую, но качественную кабельную сеть традиционного проводного типа для повседневной работы фирмы. Для работы, а не для серфинга с ноутбука новостных и/или порно-сайтов с гостиничного дивана. К этим вопросам мы, возможно, вернемся в продолжении (не к гостинице и иже с ней, разумеется, а к современным технологиям).

Последнее, и, также, очень важное: деньги считаем, но не жадничаем.

План

В самом начале надо обязательно сделать одну очень простую, но очень важную вещь - взять несколько листков бумаги, карандаш и сесть за черновой бизнес-план. Очень важно более-менее четко "взять на карандаш"все ключевые слова, которые придут на ум от вопроса «что я хочу от сети». Эти позиции набросать на первом листе. На втором - их сгруппировать по раздельным категориям. Например - категория «сервисы». Какие именно сервисы мы хотим получить от сети, и какого качества? Что нам необходимо? File-, ftp-, print-, internet-сервис?

Казалось бы, вроде все ясно, зачем писать, рисовать? Но, если не взять все на карандаш - потом будет хуже. К примеру, окажется, что надо идти к директору и/или в бухгалтерию: «Извините, мы вот тут не ту железку купили, да и не за 100 у.е. надо, а за 500.».

Теперь можно передохнув добавить что надо, выбросить излишества. И всё это отложить как минимум на денёк. Далее черновик можно перенести на третий лист. С "окончательными"дополнениями и исправлениями. Почему кавычки - вы сами понимаете, это не последний листок, и далеко не последние «зарисовки».

Сервисы - сервисами, однако, база - это СКС, то есть, структурированная кабельная система. Давайте будем стараться не бежать сильно впереди лошади.

Обычно есть два варианта - офис "с нуля"и офис «готов». Первый случай - голые стены и потолок, ремонт - наши, и это хорошо. Второй вариант - «готово». Т.е. - начинаем внешнюю прокладку СКС. Но, начнем не с этого, пока.

Электричество

Важный этап, ведь не дай Бог "полетит" не просто один-два рядовых компьютера, может "полететь" всё. Хорошо, считаем, что у нас в офисе с силовой сетью всё в порядке. Здесь только один важный момент - источники бесперебойного питания (ИБП). Они необходимы. Поверьте. Дизель-генератор, конечно, хорош, но не во всех случаях обязателен, а вот жалеть денег на установку ИБП на каждый сервер или коммуникационный шкаф просто глупо. Впрочем, к вопросу об ИБП мы вернемся в свое время.

СКС и базовое активное оборудование

Структурированная кабельная система (СКС) - один из краеугольных камней. СКС должна быть правильно спроектирована и построена. Разделим вопрос на пункты:

* Коммуникационный шкаф (с «начинкой»)
* Кабельные линии
* Абонентские розетки

Здесь очень пригодится план помещений, с четко отмеченными местами сотрудников. Надо иметь ввиду - неплохо еще и силовые розетки отметить. Далее - по порядку, начнем с шкафа.

Коммуникационный шкаф: находим удобное место для установки шкафа с оборудованием. Важно найти оптимальное расстояние до рабочих станций, с целью уменьшения расходов на витую пару, кабель-канал и прочую «мелочь». Факторов много: ограничение длины линии до 100 метров (вернее, 90 метров, по классической формуле 90+5+5); планировка офиса (в каком месте удобно поставить или повесить шкаф, удобно ли проходить стены при протяжке кабеля, не будет ли охлаждение давить на уши клиентам или сотрудникам и т.д.); собственно, конструктив шкафа (напольный, настенный, его высота в U, количество оборудования, которое надо в него установить, будет ли блок охлаждения).

Шкафы существуют самые разнообразные, надо внимательно посмотреть цены и качество предполагаемой покупки, не забыть сделать запас по ёмкости(!) в тех самых U. Обязательно - наличие как минимум одной полки. Впрочем, в некоторых местах вполне можно обойтись и настенными кронштейнами, для закрепления оборудования. Но это уже специфика. Будем считать, что для офиса мы выбрали 12-14-высотный шкаф, со стеклянной дверью. Немного забегая вперед, надо упомянуть что будет устанавливаться внутрь:

Полка: пригодится всегда, даже если будет пустовать (сомневаюсь) - ее можно снять. Не стоит жалеть 10-20 долларов, когда придётся "вдруг"поставить в шкаф устройство-другое, вспомните эти строки.

Коммутатор (switch): 24 порта по нижнему пределу сотрудников фирмы в офисе - пускай будет 10-20 человек в офисе (и не забываем о серверах и другом сетевом оборудовании). Впрочем, если будет большая плотность рабочих мест, никаких проблем добавить необходимое количество коммутаторов и прочего соответствующего оборудования не будет.

Распределительная панель (patch-панель): 24 порта, все аналогично с коммутатором. Именно на патч-панель и будут сводиться все линии от рабочих станций и серверов.

Панель (блок) силовых розеток: по количеству подключаемого оборудования в шкафу, плюс - запас 1-2 розетки на панели. Здесь нас вполне может ожидать "засада" если придется подключать блоки питания - может не хватить (вспоминаем о 99,9% рынка, заполненных сетевыми фильтрами с плотно-косо посаженными розетками).

Можно поставить дешёвый простенький вариант (вот когда пригодится полка, но можно и на пол шкафа), можно и 19” ИБП, предназначенный для установки в шкаф.

Итак, посмотрев предлагаемую на рынке продукцию, считаем, что со шкафом определились: 14-высотный (14 U). Например, Molex MODBOX II 14U:

Возможность применения в шкафу 19-дюймового вентилятора 1U
. Стандартная комплектация шкафа:
. Легкий стальной профиль обеспечивает шкафу большую жесткость и прочность
. Эстетичная стеклянная дверь с замком
. Дверь универсальной конструкции с возможностью перевешивания (левая, правая)
. 19-тидюймовая рама с регуляцией глубины
. Заземление всех элементов шкафа
. Отверстия для ввода кабеля снабжены защитной щеткой для защиты от проникновения пыли в шкаф

Коммутатор. Его выбор - более сложный вопрос. Совсем дешёвые коммутаторы не хочется рассматривать. Остаются устройства подороже (и очень подороже), но все равно придется выбирать из двух типов: неуправляемые и управляемые.

Остановим взгляд на следующих двух устройствах: ZyXEL Dimension ES-1024 и ES-2024:

Является экономически выгодным решением Fast Ethernet и может использоваться для построения высокоэффективных коммутируемых сетей. Функция промежуточного хранения данных заметно сокращает время ожидания в высокоскоростных сетях. Коммутатор разработан для рабочих групп, отделов или магистральных вычислительных сред для небольших и средних предприятий. За счет большой адресной таблицы и высокой производительности, коммутатор является отличным решением для подключения сетей отделов к корпоративной магистрали или для соединения сегментов сетей.

Технические характеристики:

24-портовый коммутатор Fast Ethernet
. Соответствие стандартам IEEE 802.3, 802.3u и 802.3x
. Порты Ethernet RJ-45 с автоматическим выбором скорости 10/100 Мбит/с
. Автоматическое определение подключения перекрестного кабеля на всех портах Ethernet RJ-45 10/100 Мбит/с
. Поддержка управления потоком Back-Pressure-Base на полудуплексных портах
. Поддержка управления потоком Pause-Frame-Base на полнодуплексных портах
. Поддержка коммутации с промежуточным хранением
. Поддержка автоматического определения адресов
. Максимальная скорость пересылки по проводной сети
. Встроенная таблица MAC-адресов (объем 8K MAC-адресов)
. Светодиодные индикаторы питания, LK/ACT и FD/COL


Применение коммутатора ES-2024 позволит объединить группу пользователей и подключить их скоростными линиями к корпоративной сети. Дополнительно появится возможность, благодаря применению технологии iStackingTM , объединить для управления по сети группу коммутаторов, вне зависимости от их месторасположения.

Технические характеристики:

24 порта RJ-45 с автоматическим выбором скорости 10/100 Ethernet и автоматическим определением подключения перекрестного кабеля
. 2 портами 10/100/1000 Ethernet
. 2 слота стандарта mini-GBIC, совмещённых с портами
. 8,8 Гбит/сек неблокируемая коммутационная шина
. Поддержка протоколов IEEE 802.3u, 802.3ab, 802.3z, 802.3x, 802.1D, 802.1w, 802.1p
. Таблица MAC адресов 10Кб
. Поддержка VLAN: Port-based и 802.1Q
. Возможность ограничения скорости на порту
. 64 статических VLAN и до 2Кб динамических VLAN
. Фильтрация MAC - адресов
. Поддержка ZyXEL iStacking™, до 8 коммутаторов (в будущем до 24) управляемых по одному адресу IP
. Управление по RS-232 и по WEB-интерфейсу
. Telnet CLI
. SNMP V2c(RFC 1213, 1493, 1643, 1757, 2647)
. Управление по IP: статический IP или DHCP-клиент
. Обновление микропрограммы по FTP
. Обновление и сохранение системной конфигурации
. Стандартное 19-дюймовое исполнение для монтажа в стойку

Как видим - разница есть, и весьма серьезная. Как есть разница в цене - приблизительно 100 и 450 долларов. Но, если первый коммутатор приличный, но "тупой"ящик, то второй - в каком-то смысле интеллектуальный, с гораздо большей функциональностью и управляемый, с потенциально сильными сторонами. Выбираем второй вариант. Мы ведь хотим построить хорошую сеть?

Кстати, именно сейчас вполне пора задаться вопросом, почему, собственно, строим сеть «сотку»? Нынче в каждом втором компьютере не просто гигабитный сетевой интерфейс, а два гигабитных?

Вот это и есть тот случай, где можно смело экономить. Дело в том, что для работы офиса 100-мегабитной сети более чем достаточно. Если к тому же еще и коммутатор приличный! Да, а на два гигабитных интерфейса выбранного коммутатора - смело "садим", например, два сервера. Вот им, серверам, это как раз только на пользу.

Конечно, можно взять что-то вроде ZyXEL GS-2024 и посадить всех на гигабитный канал, но это как раз случай неразумной траты денег, и за такие деньги мы можем купить полностью весь шкаф с более укомплектованной начинкой.

Патч-панель. Также тот случай, когда не стоит сильно экономить. Выбираем панель вроде Molex 19" 24xRJ45, KATT, 568B, UTP, PowerCat 5e, 1U.

Соответствие требованиям категории 5е. Система компенсации реализована непосредственно на печатной плате. Применение коннекторов типа КАТТ ускоряет и упрощает монтаж кабеля. Выделенное место для маркировки каналов. Панель покрыта порошковым лаком. Все необходимые крепежные и маркировочные элементы поставляются в комплекте.

Здесь много вариантов, как уже говорилось, можно поставить любой дешевый, можно дороже, можно 19” rack-вариант - будет и вовсе красота. Кто не знает фирму APC? Можно посмотреть например такой ИБП:


APC Smart-UPS SC 1500VA 230V - 2U Rackmount/Tower

Или, вот такой:

Не углубляясь в характеристики, заметим, что многие устройства комплектуются по запросу направляющими для установки ИБП в 19" стойку. Также, есть возможность укомплектовать, по желанию, модулем SNMP для мониторинга и управления ИБП по компьютерной сети. Конечно, это будет стоить денег, но может оказаться очень удобно. Остановим свой выбор на IPPON. Надо заметить, что поддержкой SNMP могут комплектоваться модели 1500, 2000 и 3000, а 750 и 1000 - нет.

Блок силовых розеток:



Без особых комментариев - может быть, можно найти что-нибудь и дешевле, проще. Но десяток "удушенных енотов" погоду не сделают.

Осталось не забыть принять решение, необходим ли вентиляторный блок в шкаф? Дорогое удовольствие, особенно в паре с блоком терморегулятора. Однако, отнесем это уже к конкретике места/офиса.


Со шкафом более-менее разобрались, остались всякие «мелочи», без учета которых потом будут досадные задержки:

* Винты с гайками для монтажа оборудования в шкафу;
* Нейлоновые не открывающиеся стяжки для укладки и крепления кабеля (упаковки по 100 шт. длиной 100, 150, 200 мм);
* Маркировка для кабеля (клеящиеся листочки с защитным слоем).

Фактически, мы добрались до самой СКС. Очень важная "деталь"- кабель, которым и будет делаться разводка СКС. Да, опять призыв не экономить. Хорошая витая пара - это хорошее вложение. Берем Molex, неэкранированный кабель UTP PowerCat 5е.

Кабель является основным элементом линейки продуктов PowerCat. Линейка спроектирована для использования в скоростных телекоммуникационных сетях (например GigaEthernet 1000Base-T).

К абонентским розеткам, мы, конечно же, придем, а дальше? Дальше - купить необходимое количество патч-кордов для подключения рабочих станций. Естественно, надо продумать длину, посмотреть по упоминавшемуся плану офиса. Но это ещё не всё. Необходим еще и strainded-кабель (обычный - solid). Это специальная витая пара, "мягкая», из которой и делаются патч-корды. Ведь обязательно рано или поздно понадобится патч-корд большей длины, нежели есть из готовых под рукой (если вообще к тому времени останутся). Кроме того, можно (или нужно - как хотите) будет сделать короткие - 30-50 см, патч-корды для кроссировки линий СКС и активного оборудования в самом шкафу. Поэтому "берем на карандаш" еще пару-тройку упаковок коннекторов RJ45, в просторечьи - «фишки». И упаковку резиновых колпачков для них. Колпачки лучше брать мягкие и с прорезью под фиксатор «фишки», а не с «пупырышком"под фиксатор.

Мы уже добрались практически до сетевых интерфейсов на пользовательских компьютерах, но еще необходимы абонентские розетки. Кто-то против такой замечательной штуки, как Molex OFFICE BLOCK 2хRJ45? ;-)

Соответствие требованиям категории 5е. Модули предназначены для скоростных телекоммуникационных сетей. Возможность ввода кабеля с боков, сверху или сзади. Стандартно модули снабжены шторками от пыли. Удобство маркировки каналов. Встроенный магнит упрощает монтаж модулей к металлическим поверхностям. Возможность крепления с помощью шурупов. Крепление кабеля внутри модуля без кабельных хомутов. Свободный выбор последовательности соединения (568А/В). Коннектор типа "КАТТ" облегчающий монтаж. В комплект входят монтажные элементы. .

Здесь надо определиться с количеством. Ведь есть и одинарные варианты. Снова берем план офиса. В определении мест установки розеток есть еще один важный момент -желательно на каждый кабинет добавить одну-две дополнительные линии СКС. Одну - просто «на всякий случай». А вдруг немного изменится планировка в кабинете или кому-то необходимо будет еще ноутбук подключить? Вторую - неплохо иметь в расчете на принт-сервер, для организации сетевой печати. Очень неплохо иметь на кабинет или офис один-два сетевых принтера, которые работают без проблем и капризов хозяина (или Windows).

Думаете - всё? Нет. Забыт еще один фактор, присутствующий любому офису - телефония. Очень неплохо подумать и об этом: если к некоторым рабочим местам должны быть проведены телефоны, то почему бы не сделать разводку в общей СКС? Ведь вопрос можно решить просто: кинуть линию-другую к необходимым местам, поставить рядом с RJ-45 еще и RJ-12 розетку, можно даже в одном корпусе (блоке). В розетку - DECT, к примеру, с несколькими трубками, а в шкаф проводим линию (линии) от АТС - их можно посадить на розетки, аккуратно приклеенные липучкой внутри и сбоку. Линии от рабочих мест - на них.

Вроде пора браться за кабель-канал и дюбель-гвозди? Да. Уже пора. Но это уже любому рукастому мужику понятно, не будем на этом долго останавливаться. Просто надо учесть количество укладываемых линий в кабель-канал. И, конечно же, необходим небольшой запас. Очень хорошо, если в офисе подвесной потолок, линии можно протягивать за ним прямо до рабочего места и спускать в кабель-канале по стене. При протяжке линий неплохо промаркировать их (как и в дальнейшем розетки). Самый простой метод - первая розетка слева от двери - №1, дальше по кругу.

Протянув линии, можно приступать к расколке патч-панели и розеток. Излишне говорить, что эта работа требует аккуратности и квалификации. Именно в этот момент нам пригодится маркировка линий - если все линии расколоть по порядку, то в дальнейшей эксплуатации СКС можно будет практически обойтись без карты (раскладки) монтажа, приблизительно такой:

Розетка

Однако, эта карточка все-таки в будущем необходима. Пригодится обязательно.

При прокладке кабелей необходимо соблюдать несколько простых правил (именно простых, не будем сейчас углубляться в стандарты и прочие ISO):

* Сильно не изгибать, не тереть и не наступать на кабель. Изгиб кабеля допускается: при монтаже - 8, и, при эксплуатации - 4 радиуса самого кабеля;
* Не прокладывать линии рядом с силовыми: если есть необходимость положить параллельно - на расстоянии не менее 20 см;
* Пересекать силовые линии допускается, под прямым углом;
* Обязательно тестирование кабельным тестером.

Отдельно о последнем пункте. Помните анекдот про японскую поставку чего-то там? «Уважаемые заказчики! Мы не знаем зачем это вам, но мы все-таки решили положить в ящики по одному бракованному чипу на каждые десять тысяч, согласно вашим требованиям». Да, можно просто расколоть и забыть. Опытный монтажник не ошибается. Однако, действительно опытный монтажник обязательно проверит, и не только раскладку линии, но и качество.

Вот мы и дошли до самого интересного момента. Если простеньким и дешевым тестером мы проверим мелочь, то провести тесты и сертификацию линий - нет, никак не получится:


Какой выход? Очень не хочется оставлять вопрос качества линий нерешенным. Есть три варианта. Первый - купить хороший тестер, к примеру:

Но, увы, нам очень жалко $6000, пускай даже за такой прекрасный и необходимый прибор.

Это компактный переносной инструмент, используемый для аттестации, тестирования и выявления неисправностей в коаксиальном кабеле и кабеле на основе витой пары в локальных вычислительных сетях. Тестер рекомендован ведущими производителями информационных кабельных систем для тестирования под сертификацию систем до Класса Е включительно. Высокий уровень надежности, удобства и точности прибора обеспечили ему одно из первых мест среди изделий этого класса. Для быстрого и качественного тестирования кабельных соединений в расширенном частотном диапазоне до 350 МГц, применяются технологии цифровой обработки импульсного сигнала.

Второй вариант - пригласить знакомого админа или монтажника, у которого есть такой или аналогичный прибор. Конечно же, предварительно купив ящик хорошего пива. Полчаса работы, плюс пивной вечер в приятной компании знакомого.

Третий вариант - официально пригласить специалистов из какой-либо фирмы, которая оказывает такие услуги. И оплатить эти услуги. Это не так уж и много, особенно, если не требовать сертификата на бумаге.

Удаленные рабочие станции

"Закончив" (кавычки потому что надо сначала все-таки спланировать все и произвести необходимые закупки и переговоры) с работами на основном офисе, мы вспоминаем о складе и магазине.

Сейчас (в этих записках) рассмотрим не "мудреное"решение вроде VPN, а самое простое - организация связи компьютерных сетей с подсетями (рабочих станций с сетью) по выделенной линии. Эффективно, дешево и сердито. Кстати, выделёнки, конечно, следует завести в шкаф и подключить на розетки, как и телефоны.

Если расстояние и, соответственно, сопротивление выделенной линии небольшие, можно попробовать поставить пару "бриджей", например, уже упоминавшейся фирмы ZyXEL Prestige 841С и ZyXEL Prestige 841 . Модель "С"- «мастер», поэтому это устройство лучше устанавливать в головном офисе. Это недорогие устройства, работающие по технологии VDSL, однако дают необходимые результаты для нашей задачи. Что говорит ZyXEL:

В зависимости от вида и состояния кабеля, а также от расстояния Prestige 841 в паре с Prestige 841C обеспечивает следующую скорость обмена данными:

По направлению к абоненту - в пределах от 4.17 до 18.75 Мбит/с
. по направлению от абонента - от 1,56 до 16,67 Мбит/с
. суммарная пропускная способность линии может достигать 35 Мбит/с

Технические характеристики:

VDSL-мост Ethernet
. Соединение локальных сетей на скорости 15 Мбит/с до 1.5 км
. Plug&Play, прозрачен для всех протоколов
. Работают в паре
. Исполнение настольное
. Энергонезависимая память (Flash ROM)
. Размер: 181 x 128 x 30 мм

Этот вариант даст 18 Mb в каждую сторону, в идеале, конечно. Это VDSL.

При использовании Prestige 841 есть еще один плюс. Эти устройства имеют встроенный сплиттер, и мы можем получить "халявную"телефонию с удаленным местом. Достаточно включить в разъем “phone”с одной стороны телефон удаленного рабочего места, а с другой стороны - подключить офисную мини-АТС.

Если бриджи VDSL не "вытянут"линию, надо взглянуть на другие устройства, xDSL. Например - что-то из 79х серии ZyXEL, SHDSL.

Оптимизация аппаратной части и применение передовых технологий позволили не только уменьшить габариты устройства, но и снизить стоимость и улучшить функциональные характеристики. обеспечивают симметричное соединение на скоростях до 2.3 МБит/с и могут работать на выделенной 2-проводной линии как в режиме "точка-точка", так и в качестве клиента концентратора провайдера Интернет.

Технические характеристики:

. SHDSL-маршрутизатор
. Поддержка G.991.2 на скорости до 2.3 Мбит/с симметрично
. Соединение сетей или доступ в Интернет на больших расстояниях
. Инкапсуляция PPPoA, PPPoE, RFC-1483
. Маршрутизация TCP/IP, Full NAT, фильтрация пакетов
. Поддержка IP Policy Routing , UPnP, резервирование соединения
. Управление через консоль, Telnet, Web, SNMP

Идеальная скорость - 2,3Mb по двум проводам. Если "зарядить" 4 провода, скорость будет, соответственно, больше. Однако эти устройства обойдутся в большую сумму - 400-500 долларов за пару. В любом случае, грубо говоря, чем хуже качество линии, тем ниже скорость и больше затраты. Однако настройку (тюнинг) устройств отложим на будущее, это отдельный разговор, тем более что в случае с VDSL 841 это вообще не имеет слишком большого смыла. xDSL-устройства стоит поставить на полку в шкафу. Я ведь говорил, что она не будет пустовать.

Подключение к интернету

ZyXEL Prestige-660

Современный офис немыслим без интернета. Для подключения можем использовать ADSL-технологию, к примеру - ZyXEL Prestige 660 .

Как описывает это устройство ZyXEL:

Модем P-660R принадлежит к четвертому поколению ADSL-модемов и объединяет в одном устройстве функциональность, необходимую для подключения уже имеющейся офисной или домашней сети к Интернету: модем ADSL2+, маршрутизатор и межсетевой экран. Модем обеспечит ваш офис постоянным подключением в Интернет, работающим быстро и безопасно. Установка и обслуживание модема P-660R проста и не доставит никаких проблем даже неподготовленным пользователям.

Основные преимущества ZyXEL Prestige 660:

* Высокоскоростной Интернет - до 24 Мбит/с
* Надежное соединение на проблемных линиях
* Свободный телефон
* Постоянное соединение
* Не требует установки драйвера
* Работает с W



Если заметили ошибку, выделите фрагмент текста и нажмите Ctrl+Enter
ПОДЕЛИТЬСЯ: