Windows. Вирусы. Ноутбуки. Интернет. Office. Утилиты. Драйверы

Здравствуйте друзья! В этой статье мы постарались ответить на многочисленные Ваши вопросы, касающиеся оперативной памяти. ? Как узнать, какая оперативная память у меня установлена и сколько? Как правильно подобрать оперативную память для своего компьютера. Как узнать, работает ваша оперативная память в двухканальном режиме или нет? Что лучше купить, одну планку памяти объёмом 8Гб DDR3 или две планки по 4 ГБ каждая? Ну и наконец .

  • Если вам интересно, или , тоже читайте наши статьи.
  1. Здравствуйте админ, один мой знакомый просит установить ему побольше оперативной памяти. В свойствах компьютера показан объём 2 ГБ. Выключили компьютер, открыли системный блок, там одна планка оперативной памяти, вынули её, а на ней никаких обозначений нет. Что интересно, не удалось определить и модель материнской платы. Компьютер куплен давно, соответственно и встал вопрос - а как узнать тип оперативной памяти, которая ему нужна? Ведь оперативная память различается по типу, частоте и по таймингам.
  2. Всем привет! Хотел докупить оперативную память, снял крышку системного блока, вынул планку оперативной памяти и не могу расшифровать информацию нанесённую на ней, там просто написан серийный номер и всё. Совсем непонятно на какой частоте она работает и какой у неё тип, DDR3 или DDR2. Как отличить память DDR3 от DDR2, как они отличаются внешне?
  3. У меня в системном блоке одна плашка оперативной памяти DDR 3-1600 объёмом 4 ГБ, хочу поставить ещё одну планку тоже объёмом 4 ГБ, но работающую на более высокой частоте DDR3-1866. Мой компьютер будет нормально работать, а самое главное в двухканальном режиме?
    Мой приятель установил в системный блок три разных по объёму и частоте планки оперативной памяти. Разве это допускается? Но что странно, у него компьютер нормально работает!
  4. Скажите, как проверить, работает моя оперативная память в двухканальном режиме или нет? И какие условия нужны для того, чтобы моя память работала в двухканальном режиме. Одинаковый объём? Одинаковая частота или одинаковые тайминги? Насколько быстрее работает компьютер в двухканальном режиме, нежели в одноканальном. Говорят что ещё есть и трёхканальный режим.
  5. Что лучше будет работать, две планки оперативки по 4 ГБ в двухканальном режиме или одна планка, но объёмом 8 ГБ, соответственно режим работы памяти будет одноканальный?

Чтобы узнать всю информацию о модуле оперативной памяти, его нужно внимательно рассмотреть, обычно производитель маркирует оперативку должной информацией о частоте, объёме и типе оперативной памяти. Если такой инфы на модуле нет, значит нужно узнать всё о материнской плате и установленном процессоре, иногда данное действие превращается в целое расследование.

  1. Важные замечания : Друзья, не забывайте, что у Всех новых процессоров Intel Core i3, Intel Core i5, Intel Core i7 контроллер оперативной памяти находится в самом процессоре (раньше этим заправлял северный мост материнки) и модули памяти теперь непосредственно управляются самим процессором, тоже самое относится к последним процессорам AMD.
  2. Это означает, что не важно, какую частоту оперативной памяти поддерживает Ваша материнская плата. Важно, какую частоту оперативной памяти поддерживает Ваш процессор. Если в Вашем компьютере установлен процессор Intel Core i3 , Intel Core i5 , Intel Core i7 , то официально поддерживаемые стандарты памяти данных процессоров: PC3-8500 (DDR3-1066 MHz ), PC3-10600 (DDR3-1333 MHz ), PC3-12800 (DDR3-1600 MHz ), именно на таких частотах будет работать Ваша оперативная память, даже если в паспорте материнской платы указано то, что материнка может работать с планками оперативной памяти высокой частоты PC3-19200 (DDR3-2400 MHz ).
  3. Другое дело, если Ваш процессор с разблокированным множителем , то есть с буквой "K ” в конце, например CPU Intel Core i7-4770 K , 3.5 GHz. Разблокированный множитель обозначает то, что в компьютер с таким процессором можно установить планки памяти самой высокой частоты, например DDR3- 1866 MHz или DDR3-2400 MHz , такой процессор можно разогнать и в разгоне оперативка будет работать на своей частоте2400 MHz . Если установить планку оперативной памяти DDR3-1866 MHz или DDR3-2400 MHz в компьютер с обычным процессором, то есть с заблокированным множителем без буквы " K” в конце, например Intel Core i7-3770, 3.9 GHz , то такая планка будет работать в лучшем случае на частоте DDR3-1600 MHz, а в худшем - компьютер не будет загружаться. Поэтому, покупайте оперативную память подходящую Вашему процессору.
  4. Что касается процессоров AMD последних лет, то они работают с памятью PC3-10600 (DDR3-1333 MHz ).
Как узнать всю информацию об установленной у вас оперативной памяти?
Во первых, на самой планке оперативной памяти должна быть вся интересующая вас информация, только её нужно правильно прочесть. Не спорю, бывают планки памяти, на которых нет практически ничего, но с ними мы тоже справимся.
Например возьмём планку оперативной памяти Hynix, на ней есть такая информация: 4 GB PC3 – 12800.

Что обозначает следующее:

во-первых, объём 4 ГБ,

во-вторых, 1Rx8 - Ранк - область памяти, созданная несколькими или всеми чипами модуля памяти, 1Rx8 - это ранки односторонней, а 2Rx8 -двусторонней памяти.

Как видим, на этой планке не написано что она DDR2 или DDR3, но указана пропускная способность PC3-12800. PC3 - обозначение пиковой пропускной способности принадлежащей только типу DDR3 (у оперативной памяти DDR2 обозначение будет PC2, например PC2-6400).

Это значит, что наша планка оперативной памяти производителя Hynix имеет тип DDR3 и имеет пропускную способность PC3-12800. Если пропускную способность 12800 разделить на восемь и получается 1600. То есть эта планка памяти типа DDR3, работает на частоте 1600 Мгц.

Прочитайте всё, что касается оперативной памяти DDR2 и DDR3 на сайте

http://ru.wikipedia.org/wiki/DDR3 и вам всё станет понятно.

Возьмём ещё один модуль оперативной памяти – Crucial 4GB DDR3 1333 (PC3 – 10600). Это обозначает следующее: объём 4 ГБ, тип памяти DDR3, частота 1333 МГц, ещё указана пропускная способность PC3-10600.


Возьмём другую планку – Patriot 1GB PC2 – 6400.

Производитель Patriot, объём 1 ГБ, пропускная способность PC2 – 6400. PC2 - обозначение пиковой пропускной способности принадлежащей только типу DDR2 (у оперативной памяти DDR3 обозначение будет PC3, например PC3-12800). Пропускную способность 6400 делим на восемь и получается 800. То есть эта планка памяти типа DDR2, работает на частоте 800 Мгц.

Ещё одна планка - Kingston KHX6400D2 LL/1G
Производитель Kingston, пропускная способность 6400, тип DDR2, объём 1 ГБ. Пропускную способность делим на 8, получаем частоту 800 МГц.
Но на этой планке оперативной памяти есть ещё важная информация , у неё напряжение питания микросхем нестандартное: 2.0 В - выставляется в БИОС вручную.

Модули оперативной памяти отличаются между собой по размеру контактных площадок и по расположению вырезов. С помощью выреза вы не сможете установить модуль оперативной памяти в непредназначенный для него слот. Например планку памяти DDR3 установить в слот DDR2 не получится.

Всё хорошо видно по этой схеме.

Иногда на модуле оперативной памяти не будет никакой понятной информации, кроме названия самого модуля. А модуль нельзя снять, так как он на гарантии. Но и по названию можно понять, что это за память. Например

Kingston KHX1600 C9D3 X2K2/8G X, всё это обозначает:

KHX 1600 -> Оперативка работает на частоте 1600 МГц

C9 -> Тайминги (Задержки) 9-9-9

D3 -> Тип оперативки DDR3

8G X -> Объём 4 ГБ.

Можно просто набрать название модуля в поисковиках и вы узнаете всю информацию о нём.
К примеру, информация программы AIDA64 о моей оперативной памяти. Модули оперативной памяти Kingston HyperX установлены в слоты оперативной памяти 2 и 4, тип памяти DDR3, частота 1600 МГц
DIMM2: Kingston HyperX KHX1600C9D3/4GX DDR3-1600 DDR3 SDRAM
DIMM4: Kingston HyperX KHX1600C9D3/4GX DDR3-1600 DDR3 SDRAM

Можно ли установить в компьютер планки оперативной памяти с разной частотой?

Частота оперативной памяти не обязательно должна совпадать. Материнская плата выставит частоту для всех установленных планок оперативки по самому медленному модулю. Но хочу сказать, что часто компьютер с планками разной частоты работает нестабильно.

Проведём простой эксперимент. Например, возьмём мой компьютер, в нём установлено два одинаковых модуля оперативной памяти Kingston HyperX, тип памяти DDR3, частота 1600 МГц.

Если запустить в моей Windows 8 программу AIDA64, то она покажет такую информацию (смотрите следующий скришнот). То есть программа AIDA64 показывает простые технические характеристики каждой из планок оперативки, в нашем случае обе планки имеют частоту 1600 МГц. Но программа AIDA64 не показывает на какой именно частоте сейчас работают планки оперативной памяти, это нужно смотреть в другой программе под названием CPU-Z.

Если запустить бесплатную программу CPU-Z и пройти на вкладку Memory (Память), то она покажет на какой именно частоте работают Ваши планки оперативки. Моя память работает в двухканальном режиме Dual, частота 800 МГц, так как память DDR3, то её эффективная (удвоенная) скорость 1600 МГц. Значит мои планки оперативной памяти работают именно на той частоте, для которой они и предназначены 1600 МГц. Но что будет, если рядом со своими планками оперативной памяти работающими на частоте 1600 МГц я установлю другую планку с частотой 1333 МГц!?

Установим в мой системный блок дополнительную планку памяти DDR3, работающую на более низкой частоте 1333 МГц.

Смотрим что показывает AIDA64, в программе видно, что установлена дополнительная планка объёмом 4 ГБ, частота 1333 МГц.

Теперь запустим программу CPU-Z и посмотрим на какой частоте работают все три планки. Как видим частота 668,7 МГц, так как память DDR3, то её эффективная (удвоенная) скорость 1333МГц.

То есть, материнская плата автоматически выставила частоту работы всех планок оперативной памяти по самому медленному модулю 1333МГц.

Можно ли установить в компьютер планки оперативной памяти с частотой больше, чем поддерживает материнская плата Самое главное, чтобы частота оперативной памяти поддерживалась вашей материнской платой и процессором (про процессоры есть информация в начале статьи). Например возьмём материнскую плату Asus P8Z77-V LX, ей поддерживаются модули работающие на частотах 1600/1333 МГц в номинальном режиме и 2400/2200/2133/2000/1866/1800 МГц в разгоне. Всё это можно узнать в паспорте на материнскую плату или на официальном сайте http://www.asus.com

Устанавливать в компьютер планки оперативной памяти с частотой больше, чем поддерживает материнская плата не желательно. Например, если ваша материнская плата поддерживает максимальную частоту оперативной памяти 1600 МГц, а вы установили на компьютер модуль оперативной памяти работающий на частоте 1866, то в лучшем случае этот модуль будет работать на меньшей частоте 1600 МГц, а в худшем случае модуль будет работать на своей частоте 1866 МГц, но компьютер будет периодически сам перезагружаться или вы получите при загрузке компьютера синий экран, в этом случае Вам придётся войти в БИОС и вручную выставить частоту оперативной памяти в 1600 МГц.

Тайминги (задержки сигнала) определяют как часто может процессор обращаться к оперативной памяти, если у вас четырёхъядерный процессор и у него большой кэш второго уровня, то слишком большие тайминги не страшны, так как процессор уже реже обращается к оперативной памяти. Можно ли установить в компьютер планки оперативной памяти с разными таймингами? Тайминги тоже не обязательно должны совпадать. Материнская плата автоматом выставит тайминги для всех планок по самому медленному модулю.

Какие условия нужны для того, чтобы моя память работала в двухканальном режиме Перед покупкой оперативной памяти нужно изучить максимум информации об материнской плате. Всю информацию о вашей материнской плате можно узнать из руководства прилагающегося к ней при покупке. Если руководство утеряно, нужно пройти на официальный сайт вашей материнки. Также вам будет полезна статья «Как узнать модель и всю информацию о своей материнской плате»
Чаще всего в наше время встречаются материнские платы, поддерживающие нижеописанные режимы работы оперативной памяти. Dual Mode (двухканальный режим, встречается чаще всего) – при внимательном рассмотрении материнской платы вы можете увидеть, что слоты оперативной памяти окрашены в разные цвета. Сделано это специально и означает, что материнская плата поддерживает двуканальный режим работы оперативной памяти. То есть специально подбираются два модуля оперативной памяти с одинаковыми характеристиками (частотой, таймингами) и одинаковым объёмом и устанавливаются в одинаковые по цвету слоты оперативной памяти.

Если на вашем компьютере установлена одна планка оперативной памяти, но материнская плата поддерживает двухканальный режим, вы можете докупить точно такую же по частоте и объёму планку оперативки и установить обе планки в одинаковые по цвету слоты DIMM.

Есть ли преимущество у двуканального режима перед одноканальным

При обычной работе на компьютере вы разницу не заметите, но при работе в приложениях, активно использующих оперативную память, например Adobe Premiere Pro (монтаж видео), (Canopus) ProCoder (кодирование видео), Photoshop (работа с изображениями), играх, разницу можно ощутить.

Примечание: Некоторые материнские платы будут работать в двухканальном режиме, даже если вы установите в одинаковые по цвету слоты DIMM разные по объёму модули оперативной памяти. Например, в первый слот DIMM вы установите модуль 512Мб, а в третий слот планку объёмом 1Гб. Материнская плата активирует двухканальный режим для всего объёма первой планки 512Мб, а для второй планки (что интересно) тоже 512Мб, а оставшиеся 512Мб второй планки будут работать в одноканальном режиме.

Как узнать, работает моя оперативная память в двухканальном режиме или нет? Скачиваем бесплатную программу CPU-Z и идём на вкладку Memory , смотрим параметр Channel в нашем случае - Dual , значит оперативная память работает в двухканальном режиме. Если параметр Channels - Single , значит оперативная память работает в одноканальном режиме.

Triple Mode (трехканальный режим, редко встречается) – можно установить от трёх до шести модулей памяти. Что лучше будет работать, две планки оперативки по 4 ГБ в двухканальном режиме или одна планка, но объёмом 8 ГБ в одноканальном режиме?

Моё мнение, при обычной работе на компьютере одинаково будут работать, лично я особой разницы не заметил. Я долго работал на компьютере с одной большой планкой оперативки и производительность была такая же, как и на точно таком же компьютере с двумя планками оперативки работающими в двухканальном режиме. Опрос друзей и знакомых сисадминов укрепил меня в этом мнении. Но вот при работе с программами активно использующими оперативную память, например Adobe Premiere Pro, Canopus ProCoder, Photoshop, играх, компьютер с двумя планками оперативной памяти будет работать быстрее.

Можно ли в компьютер установить несколько разных по частоте и объёму планок оперативной памяти?

Конечно можно, но не желательно. Компьютер будет работать стабильнее, если в нём будет реализован тот режим работы оперативной памяти, который рекомендован в паспорте материнской платы. К примеру двухканальный режим.

ВведениеК тестированию зависимости производительности современных платформ верхнего уровня от характеристик подсистемы памяти мы обращаемся не слишком часто. Не такая это животрепещущая и интересующая широкие массы пользователей тема. Все давно привыкли к тому, что частота работы DDR3 SDRAM и её тайминги не оказывают заметного влияния на быстродействие, а потому выбору памяти отводится не слишком большое внимание. Подбор модулей памяти при сборке новых систем в большинстве случаев происходит по остаточному принципу, причём таким подходом грешат даже многие энтузиасты. Фактически, единственная характеристика памяти, о которой задумываются серьёзно – это её объём. Все знают, что нехватка оперативной памяти может приводить к свопу приложений и операционной системы, и это в конечном итоге вызывает ухудшение отзывчивости компьютера. А вот о том, что на скорость работы могут существенно повлиять и скоростные спецификации модулей памяти, думать как-то не принято.

Сложилась такая ситуация не на пустом месте. Раньше от таких параметров DDR3 SDRAM, как её частота и задержки, зависело, и правда, не слишком многое. Объяснялось это сразу несколькими причинами. Во-первых, некоторое время тому назад процессоры обзавелись значительными объёмами кэш-памяти, снабжённой эффективными алгоритмами предварительной выборки данных, которые хорошо скрывают от программ реальную скорость обмена информацией с памятью. Во-вторых, скорости и латентности доступных на рынке до недавнего времени вариантов DDR3 SDRAM на самом деле различались не слишком сильно. И, в-третьих, ворочающие действительно большими объёмами информации приложения в обиходе у обычных пользователей встречались нечасто. Вследствие всего этого и возникло суждение, что быстрая DDR3 SDRAM – это своего рода статусный товар для перфекционистов, а обычным людям она не нужна.

Однако это мнение, которое ещё пару лет тому назад можно было считать вполне обоснованным, на сегодняшний день несколько устарело, и его нетрудно подвергнуть критике. Главное: сегодняшние приложения сильно изменились по своей структуре, теперь они оперируют гораздо большими, чем ранее, объёмами информации. Популярна стала обработка цифровых фотографий размером в несколько десятков мегапикселей, многие пользователи занялись творческой работой с видеофайлами, снятыми в FullHD или даже 4K-разрешении, а современные 3D-игры дошли до взаимодействия с воистину колоссальными объёмами текстурной информации. Такие массивы данных уже не могут уместиться в процессорном кэше, вместимость которого, кстати, в течение нескольких последних лет практически прекратила свой рост.

Доступная же на рынке память, напротив, существенно расширила своё видовое разнообразие. Частоты представленной на прилавках компьютерных магазинов DDR3 SDRAM отличаются сегодня более чем в два раза, так что за счёт одного только выбора тех или иных модулей можно варьировать пропускную способность двухканальной подсистемы памяти в очень широких пределах: от 21 до 47 Гбайт/с и даже больше. Не следует забывать и о том, что новейшие процессоры Haswell стали заметно производительнее своих предшественников, а, следовательно, их потребность в быстром получении данных для обработки возросла. Поэтому, вполне можно ожидать, что тот критический рубеж, до которого скорости небыстрой памяти вроде DDR3-1333 или DDR3-1600 вполне хватало для подавляющего большинства нужд, наконец-то пройден. Иными словами, аргументов в пользу исследования зависимости реальной производительности современных систем от параметров подсистемы памяти набирается предостаточно.

Но есть и ещё одна причина, по которой сегодня мы решили обратиться к тестам DDR3 SDRAM с различными частотами и таймингами. Дело в том, что возможность исследования тонкостей работы такой памяти на актуальном материале сейчас предоставляется нам практически в последний раз. Начиная со второй половины этого года на рынок настольных систем постепенно начнёт внедряться более быстрая, экономичная и прогрессивная DDR4 SDRAM. Впервые её поддержка появится в процессорах Haswell-E, а затем, в 2015-2016 годах, приход DDR4 SDRAM состоится и в перспективной платформе LGA 1151 и процессорах Skylake. Иными словами, тесты DDR3 SDRAM не просто давно назрели, но и нет никакой возможности тянуть с ними дальше. Поэтому о том, что может предложить разная DDR3 SDRAM для платформ на базе наиболее востребованных на данный момент процессоров Haswell, мы поговорим именно сейчас.

Особенности контроллера памяти Haswell

На первый взгляд, контроллер памяти современных процессоров для платформы LGA 1150, известных под кодовым именем Haswell, не особенно отличается от контроллеров памяти предшественников – Sandy Bridge и Ivy Bridge. Эволюция алгоритмов работы с памятью в интеловских процессорах, была долгой и многоступенчатой. Но в последних поколениях CPU идейное развитие, похоже, подошло к финалу – современные технологии взаимодействия с DDR3-памятью не просто хорошо оптимизированы, а отточены до совершенства. Основным шагом, поставившим современные контроллеры Intel на голову выше прочих решений, стало введение для соединения всех структурных единиц в процессорном дизайне кольцевой шины Ring Bus, и сделано это было ещё в Sandy Bridge. Благодаря кольцевой шине все вычислительные и графические ресурсы процессора получили быстрый и равноправный доступ как к кэшу третьего уровня, так и к контроллеру памяти. В результате, практическая пропускная способность подсистемы памяти существенно возросла, а её латентности уменьшились.

Однако заложенный ранее в виде кольцевой шины фундамент контроллера памяти в Haswell всё-таки претерпел некоторые важные изменения. Дело в том, что в более ранних процессорных дизайнах кольцевая шина вместе с кэш-памятью третьего уровня работала синхронно с вычислительными ядрами CPU. И это создавало некоторые неудобства при переходе процессора в энергосберегающие состояния: L3-кэш и кольцевая шина могли снизить своё быстродействие вместе с вычислительными ядрами несмотря на то, что эти ресурсы оставались востребованными графическим ядром. Чтобы такие неприятные коллизии больше не возникали, в Haswell шина Ring Bus и L3-кэш были выделены в отдельный домен и получили собственную независимую частоту.



Введение возможности асинхронного тактования кольцевой внутрипроцессорной шины, естественно, внесло неминуемые задержки в операции с L3-кэшем и контроллером памяти, однако интеловские разработчики попытались противопоставить замедлению работы подсистемы памяти различные микроархитектурные усовершенствования. Так, кэш третьего уровня получил две параллельных очереди для обработки запросов разного назначения, а в контроллере памяти были увеличены очереди и улучшен планировщик.

К тому же, асинхронность кольцевой шины, L3-кэша и контроллера памяти проявляется далеко не всегда. В реальности, если не брать во внимание энергосберегающие состояния, их частота почти всегда совпадает с частотой вычислительных ядер. Расхождения возникают лишь в двух ситуациях: при переходе процессора в турбированные режимы, либо при разгоне. Но даже в этих случаях частота L3-кэша и внутрипроцессорной шины остаётся близка к частоте вычислительных ядер, и разница между ними обычно не превышает 300-500 МГц, что, как показывает практика, почти не влияет на итоговую производительность.

При прямом сравнении быстродействия контроллера памяти Haswell и контроллера памяти Ivy Bridge, оказывается, что при одинаковых настройках более новый вариант обеспечивает в целом близкую пропускную способность и латентность. Например, в этом можно убедиться на примере результатов тестов в AIDA64.



Ivy Bridge, 4 ядра, 4.0 ГГц, DDR3-1600 9-9-9-24-1N



Haswell, 4 ядра, 4.0 ГГц, DDR3-1600 9-9-9-24-1N


Впрочем, как видно по приведённым результатам, несмотря на все старания инженеров Intel, память в Haswell всё же работает чуть медленнее, чем в LGA 1155-системах прошлого покления, основанных на процессоре Ivy Bridge. И если отличие в практической пропускной способности почти незаметно, то латентность подсистемы памяти у Haswell оказывается примерно на 9 процентов выше. Это – плата за асинхронность.

Второе существенное изменение, касающееся работы подсистемы памяти в LGA 1150-системах, относится к конструкционному исполнению материнских плат. Разработанный Intel эталонный дизайн разводки для слотов DIMM теперь основывается на T-топологии, которая уравнивает слоты DIMM, подключенные к каждому из каналов, в правах. Это улучшает стабильность контроллера памяти и обеспечивает его совместимость с более широким набором различных модулей памяти и их конфигураций. Особенно приятно здесь то, что контроллер памяти процессоров Haswell получил возможность поддерживать скоростные режимы работы даже при использовании четырёх двухсторонних модулей, установленных во все доступные слоты DIMM. Учитывая же, что максимальный объём имеющихся на рынке планок DDR3-памяти составляет 8 Гбайт, платформа LGA 1150 может обеспечить беспроблемную работу 32-гигабайтных массивов оверклокерской памяти с высокими частотами и низкими задержками.

В остальном же всё осталось, как и раньше. Контроллер памяти у Haswell двухканальный, способный работать как в симметричном двухканальном, так и в одноканальном режимах. Осталась поддержка и технологии Flex Memory, позволяющей использовать двухканальный доступ в ассиметричных конфигурациях, когда объёмы и характеристики установленных в разных каналах памяти модулей не совпадают.

Как и в процессорах Ivy Bridge, частота DDR3 SDRAM у Haswell изменяется с дискретностью 266 или 200 МГц, что даёт определённую гибкость в выборе режимов и серьёзно расширяет множество доступных для контроллера частот работы DDR3 SDRAM. При этом формально контроллером поддерживается лишь DDR3-1333 и DDR3-1600 SDRAM, однако все сделанные в нём усовершенствования позволяют беспрепятственно использовать в платформе LGA 1150 память, работающую на значительно более высоких частотах. Так, имеющийся набор множителей для частоты памяти позволяет активировать режимы вплоть до DDR3-2933, причём столь скоростные режимы действительно достижимы, никаких проблем со стабильностью при их задействовании не наблюдается.

Если же к этому добавить появившуюся возможность разгона базовой частоты Haswell со 100 до 125 МГц, то доступные для задействования частоты памяти вырастут до 3666 МГц. Причём, в сети можно встретить массу свидетельств того, что и в таком состоянии в LGA 1150-системах избранная оверклокерская память может быть вполне работоспособна.



Как известно, важные изменения в Haswell произошли с системой питания. В этом процессоре появился встроенный преобразователь питания, самостоятельно формирующий все необходимые для работы CPU напряжения. От материнской платы теперь зависит только два напряжения: входное для процессора – Vccin и напряжение, подаваемое на модули питания, – Vddq. Все же внутренние процессорные напряжения, в том числе сигнальное напряжение кольцевой шины и напряжение питания L3-кэша и контроллера памяти, формируются процессорной силовой схемой самостоятельно. Такое нововведение освободило напряжение на памяти от каких-либо ограничений, и в процессорах Haswell допускается безопасное его увеличение выше уровня в 1,65 В. Иными словами, в LGA 1150 разгонять память с изменением её напряжения питания можно как угодно, не беспокоясь о возможной деградации процессорного контроллера памяти.



Таким образом, совокупность нововведений сделала новый контроллер DDR3 SDRAM процессоров Haswell не просто высокоэффективным, но и хорошо подходящим для работы с оверклокерскими модулями памяти. А это значит, что у энтузиастов в выборе памяти для LGA 1150 систем есть огромная свобода, которая вполне может повлиять на итоговое быстродействие.

G.Skill F3-2933C12D-8GTXDG

Прежде чем перейти к результатам тестирования, несколько слов необходимо сказать о тех модулях памяти, благодаря которым это исследование стало возможным. Для того чтобы получить максимально полную картину зависимости производительности от параметров подсистемы памяти, нам был нужен комплект модулей DDR3 SDRAM с предельно возможной частотой. Таким комплектам памяти свойственна наибольшая гибкость. Их не обязательно эксплуатировать на заявленных для них космических частотах, просто для своих флагманских оверклокерских планок DDR3 производители отбирают наиболее выигрышные чипы, сохраняющие стабильность на максимально широком поле настроек. Если же принять во внимание тот факт, что контроллер памяти Haswell способен обеспечить режимы вплоть до DDR3-2933, именно такую DDR3 мы и захотели получить на тестирование.

Серийный выпуск оверклокерских комплектов DDR3-2933 SDRAM на данный момент освоило лишь несколько производителей. В их числе: ADATA, Corsair, Geil и G.Skill. И именно последняя компания из этого списка откликнулась на нашу просьбу предоставить нам на тесты свой флагманский продукт, благодаря чему мы и получили в распоряжение набор G.Skill TridentX F3-2933C12D-8GTXDG, состоящий из пары 4-гигабайтных высокоскоростных «планок». Рассчитана такая память на эксплуатацию при частоте 2933 МГц с номинальными таймингами 12-14-14-35-2N, однако, как мы смогли убедиться в процессе тестов, на деле она способна работать и в немного более скоростном режиме при установке Command Rate 1N.



Спецификации этого набора оверклокерской памяти выглядят следующим образом:

Двухканальный комплект состоит из двух модулей по 4 Гбайт каждый;
Номинальная частота: 2933 МГц;
Тайминги: 12-14-14-35-2N;
Рабочее напряжение 1,65 В.

Модули, входящие в рассматриваемый комплект, с двух сторон закрыты фирменными двухцветными красно-чёрными алюминиевыми теплорассеивателями серии TridentX. Особенность этих радиаторов – двухъярусная сочленённая конструкция. В отличие от многих других производителей, G.Skill вняла многочисленным жалобам пользователей на то, что высокие радиаторы плохо совмещаются с массивными процессорными кулерами. Поэтому радиаторы серии TridentX сделаны разборными. Верхняя (красная) их часть легко снимается после откручивания двух крепёжных винтов, и в «облегчённом» варианте высота модулей сокращается с 54 мм до всего лишь 39 мм. В этом случае проблем механической совместимости с массивными кулерами на CPU не возникает, а оставшейся части радиатора вполне хватает для эффективного отвода тепла от чипов памяти.



Для обеспечения простоты установки и конфигурирования модули G.Skill TridentX F3-2933C12D-8GTXDG обладают поддержкой технологии XMP 1.3. В единственном подготовленном XMP-профиле содержатся задекларированные в спецификации частота и задержки. Если же добавить к этому гибкость и простоту конфигурирования контроллера памяти процессоров Haswell, практический запуск этой памяти на частоте 2933 МГц не составляет никакого труда. Формула «воткнул - и работай» в данном случае превосходно применима. Для обеспечения стабильной работы контроллера памяти не потребуется, скорее всего, даже дополнительного увеличения каких-либо внутрипроцессорных напряжений. Впрочем, на всякий случай для обеспечения максимальной совместимости в SPD рассматриваемых модулей прописана конфигурация для разнообразных вариантов DDR3-1333.



В основе скоростной памяти G.Skill лежат весьма популярные в среде оверклокеров чипы Hynix H5TQ4G83MFR, которые смонтированы на специально разработанной восьмислойной печатной плате. Такой дизайн, отличающийся отменным разгонным потенциалом и низким тепловыделением, отлично себя зарекомендовал, и его применение в памяти, нацеленной на покорение сверхвысоких частот, вполне закономерно. Практическая проверка показала: в LGA 1150-системе комплект G.Skill TridentX F3-2933C12D-8GTXDG может превосходно работать на частоте 2933 МГц с таймингами 12-14-14-35-1N.



Надо сказать, что модули G.Skill TridentX F3-2933C12D-8GTXDG специально ориентированы на системы с процессорами Haswell, которые основываются на материнских платах на базе Intel Z87. Частота памяти DDR3-2933 МГц доступна пока лишь в таких платформах. При этом рассматриваемые модули имеют достаточно обширный список протестированных на совместимость материнских плат. Фактически, можно говорить о том, что использование такой памяти не вводит никаких ограничений на выбор материнской платы. Большинство моделей материнок средней и верхней ценовой категории всех ведущих производителей могут стабильно работать с комплектом G.Skill TridentX F3-2933C12D-8GTXDG, что является его важным преимуществом.



Фактически, единственный минус скоростных комплектов DDR3 SDRAM вроде рассматриваемого, заключается в их значительной цене. Например, набор G.Skill TridentX F3-2933C12D-8GTXDG стоит дороже аналогичного двухканального комплекта DDR3-1866 в несколько раз. Так что обоснованность выбора такого варианта с точки зрения рационального покупателя находится под большим вопросом. Это – эксклюзивное предложение для энтузиастов высокой производительности.

Описание тестовых систем

В подготовке этого материала была задействована платформа LGA 1150, построенная на современной материнской плате с набором логики Intel Z87, в которую мы устанавливали оверклокерский процессор Core i5-4670K с дизайном Haswell. Однако главная роль в исследовании зависимости производительности от настроек подсистемы памяти досталась высокоскоростному комплекту памяти G.Skill F3-2933C12D-8GTXDG стандарта DDR3-2933, предоставленному нам для этого тестирования производителем.

В целом в тестировании были задействованы следующие аппаратные и программные компоненты:

Процессор: Intel Core i5-4670K, разогнан до 4,4 ГГц (Haswell, 4 ядра, 6 Мбайт L3);
Процессорный кулер: NZXT Havik 140;
Материнская плата: Gigabyte Z87X-UD3H (LGA1150, Intel Z87 Express).
Память: 2x4 Гбайт, DDR3-2933 SDRAM, 12-14-14-35 (G.Skill TridentX F3-2933C12D-8GTXDG).
Графическая карта: NVIDIA GeForce GTX 780 Ti (3 Гбайт/384-бит GDDR5, 876-928/7000 МГц).
Дисковая подсистема: Intel SSD 520 240 GB (SSDSC2CW240A3K5).
Блок питания: Corsair AX760i (80 Plus Platinum, 760 Вт).

Тестирование выполнялось в операционной системе Microsoft Windows 8.1 Enterprise x64 с использованием следующего комплекта драйверов:

Intel Chipset Driver 9.4.0.1027;
Intel Management Engine Driver 9.0.2.1345;
Intel Rapid Storage Technology 12.9.0.1001;
NVIDIA GeForce Driver 334.89.

Заметьте, в настоящем тестировании мы использовали разогнанный до 4,4 ГГц процессор Haswell. Дело в том, что внештатное повышение тактовой частоты дополнительно увеличивает производительность и позволяет получить более ярко выраженную картину зависимости быстродействия от параметров подсистемы памяти.

Частота против таймингов

Каждый раз, когда речь заходит об оптимальном выборе памяти, рано или поздно встаёт вопрос о том, к чему стоит стремиться в первую очередь: к повышению частоты работы подсистемы памяти или же к снижению её задержек. Однако на этот раз мы избежим подробных тестов модулей DDR3 SDRAM, отличающихся одними лишь таймингами. Дело в том, что с выходом каждой новой платформы влияние задержек на общую производительность уменьшалось, и к настоящему времени оно, пожалуй, уже прошло критическую точку. Конечно, зависимость производительности от таймингов всё ещё возможно заметить, но по сравнению с тем эффектом, который оказывает на быстродействие системы изменение частоты DDR3 SDRAM, она стала незначительной.

Тому есть две основные причины. Во-первых, с ростом частоты работы памяти её минимальная латентность в любом случае увеличивается, и на этом фоне относительная величина прибавки варьируемых задержек становится всё менее и менее заметной. Одно дело - увеличение тайминга на пару циклов с трёх-четырёх (как было в случае DDR2 SDRAM), а другое - с девяти-десяти (в случае скоростной DDR3 SDRAM). В первом случае латентность возрастает на 50-70 процентов, а во втором - лишь на 20-22 процента. Соответственно, разница между различными вариантами таймингов у современной памяти с практической точки зрения уже далеко не так существенна, как ранее. Кроме того, на потерю схемой таймингов своего первоначального значения повлияло и общее совершенствование схемы работы процессоров с памятью. Применяемое в современных процессорах многоуровневое кэширование, а также алгоритмы предварительной выборки серьёзно маскирует реальную латентность оперативной памяти, сдвигая акценты на её пропускную способность.

Собственно, отсутствие нужды в гонке за низкими таймингами у высокочастотной DDR3 SDRAM давно уже осознали производители оверклокерских комплектов памяти. Предложения с латентностью 7-8 циклов давно исчезли из продажи, и сейчас на прилавках магазинов достаточно трудно найти модули DDR3 SDRAM с параметром CAS Latency менее 9-10 циклов. Число же предложений со сверхвысокими частотами и большими задержками при этом неуклонно растёт.

Впрочем, мы бы не хотели оставлять голословными утверждения о незначительности влияния таймингов на производительность подсистемы памяти в современных платформах, построенных на процессорах Haswell. Поэтому мы провели и практическое тестирование, в рамках которого сравнили реальное быстродействие идентичных систем, укомплектованных DDR3-1600 и DDR3-1867 SDRAM с различными задержками.












Приведённые графики выступают яркой иллюстрацией всего вышесказанного. Увеличение частоты работы памяти на 266 МГц оказывается заметно более эффективным, нежели снижение всех задержек на 3-4 цикла. И даже с точки зрения реальной латентности, которая реагирует на изменение задержек наиболее чутко, DDR3-1867 с достаточно слабыми таймингами 10-10-10-29 оказывается лучше, чем отсутствующая в продаже DDR3-1600 с агрессивными задержками 7-7-7-21. Если же судить о быстродействии подсистемы памяти, опираясь на показатели реальной пропускной способности, то DDR3-1600 не может сравниться со слегка более высокочастотным вариантом вообще ни при каких обстоятельствах.

Иными словами, задержки памяти в современных системах действительно стали совсем малозначительным фактором. Поэтому при выборе DDR3 SDRAM для процессоров Haswell в первую очередь надо обращать внимание на частоту её работы, а низкая CAS Latency и прочие подобные величины практически не сказываются на реальном быстродействии. Аналогичным образом следует поступать и при настройке и разгоне системы - сначала следует бороться за повышение частоты работы DDR3 SDRAM, а уж потом, при особом желании, заниматься минимизацией задержек.

Зависимость производительности от частоты памяти

Переходим к основной части исследования, ради которой всё и затевалось: попробуем определить, насколько сильно параметры подсистемы памяти в платформе LGA 1150 влияют на быстродействие в обычных общеупотребительных приложениях. Как было показано выше, тайминги DDR3 SDRAM в современных компьютерных системах оказывают крайне незначительное влияние даже на результаты синтетических тестов. Поэтому в подробном практическом тестировании мы решили отказаться от сравнения подсистем памяти с одинаковой частотой, но разными задержками, сосредоточившись на более ценной с практической точки зрения задаче сравнения DDR3 с различной частотой. Тем более, большинство имеющихся в продаже комплектов оверклокерской памяти отличаются друг от друга одними только задержками крайне редко. Частоты же имеющейся на рынке DDR3 SDRAM в настоящее время чрезвычайно разнообразны и, желая покрыть полный спектр доступных для использования вариантов, мы протестировали систему на базе Haswell с различными типами памяти, начиная с DDR3-1333 и заканчивая DDR3-2933 SDRAM. При этом задержки устанавливались по наиболее популярной для каждой частоты схеме. Конкретнее это означает, что испытания проводились со следующими вариантами двухканальной DDR3-памяти:

DDR3-1333, 9-9-9-24-1N;
DDR3-1600, 9-9-9-24-1N;
DDR3-1866, 9-10-9-28-1N;
DDR3-2133, 11-11-11-31-1N;
DDR3-2400, 11-13-13-31-1N;
DDR3-2666, 11-13-13-35-1N;
DDR3-2933, 12-14-14-35-1N.

Кроме настроек подсистемы памяти в тестовой платформе, основанной на разогнанном до частоты 4,4 ГГц четырёхъядерном процессоре поколения Haswell, ровным счётом ничего не менялось.

Синтетические тесты

Начать мы решили с измерения практической пропускной способности и латентности. Для этого использовался бенчмарк Cache and Memory из утилиты AIDA64 4.20.2820.









Как видно из результатов, варьируя частоту работы DDR3-памяти, можно добиться почти двукратного изменения практической пропускной способности. Что, в общем-то, вполне закономерно: частота и теоретическая полоса пропускания DDR3-1333 и DDR3-2933 различается более чем в два раза. Что же вызывает некоторое удивление, это то, что зависимость результатов от частоты оказывается далеко не линейной. Наиболее быстрые режимы памяти по каким-то причинам не обеспечивают максимальную пропускную способность. Лучший результат демонстрирует DDR3-2400 и DDR3-2666. Дальнейшее же увеличение частоты влечёт за собой некоторое падение в скорости обмена данными с памятью.

Впрочем, практическая латентность изменяется немного по другому закону.



Задержки при увеличении частоты DDR3 SDRAM снижаются в любом случае, включая и переход к наиболее скоростным режимам. Таким образом, оверклокерская DDR3-2666 и DDR3-2933 может оказаться далеко не бесполезной с точки зрения быстродействия обычных приложений. Чтобы проверить это, обратимся к тестам в реальных задачах.

Комплексная производительность

Для анализа комплексной средневзвешенной производительности в общеупотребительных применениях мы использовали популярный бенчмарк Futuremark PCMark 8 2.0, а, конкретнее, его три тестовые трассы: Home, моделирующую типичную интернет-активность домашних пользователей в, плюс их работу в текстовых и графических редакторах; Work, моделирующую работу с различными офисными приложениями и в интернет; и Creative, воспроизводящую поведение продвинутых пользователей, увлекающихся серьёзной обработкой фото и видео контента, 3D-играми, а также активно использующих сеть для получения информации и общения.









Результаты получились явно не в пользу быстрых вариантов DDR3 SDRAM. В синтетических тестах памяти всё выглядело очень красиво, но Futuremark PCMark 8 2.0 рисует диаметрально противоположную картинку. Если верить показателям производительности этого теста, то правы оказываются те пользователи, которые считают, что за последние 10-15 лет скоростные параметры подсистемы памяти так и не получили достаточного значения. Отличия в производительности систем с быстрой и медленной двухканальной DDR3 SDRAM не превышают 1-2 процентов.

Однако мы не будем полагаться на один лишь только комплексный тестовый пакет и дополнительно посмотрим на скорость работы в популярных приложениях.

Тесты в приложениях

В Autodesk 3ds max 2014 мы измеряем скорость рендеринга в mental ray специально подготовленной сложной сцены.



На скорость финального рендеринга частота работы памяти оказывает крайне малозаметное влияние. Более чем двукратное увеличение пропускной способности DDR3 SDRAM позволяет получить лишь совсем несерьёзное преимущество на уровне одного процента.

Производительность в новом Adobe Premiere Pro CC тестируется измерением времени рендеринга в формат H.264 Blu-Ray проекта, содержащего HDV 1080p25 видеоряд с наложением различных эффектов.



А вот тут, при обработке видеоконтента высокого разрешения, ситуация складывается уже совсем иначе. Разница в производительности системы с DDR3-1333 и с DDR3-2933 достигает 8 процентов, и незаметной её назвать никак нельзя. Иными словами, среди современных задач существуют и такие, для которых скорость памяти играет весьма заметное значение.

Кстати, если посмотреть на результаты более подробно, то становится очевидно, что наиболее выгодный для Premiere Pro тип памяти – это DDR3-2400. Дальнейшее повышение частоты уже не влечёт за собой заметного роста быстродействия, а вот цены на комплекты DDR3-2666 и DDR3-2933, напротив, заметно выше, чем у более медленных продуктов.

Измерение производительности в новом Adobe Photoshop CC мы проводим с использованием собственного теста, представляющего собой творчески переработанный Retouch Artists Photoshop Speed Test, включающий типичную обработку четырёх 24-мегапиксельных изображений, сделанных цифровой камерой.



К числу приложений, чутко реагирующих на параметры подсистемы памяти, можно отнести и Photoshop. Платформа, снабжённая высокоскоростной двухканальной DDR3-2933 SDRAM, превосходит по скорости работы аналогичную платформу с DDR3-1333 на 12 процентов. Преимущество же «оптимального выбора», DDR3-2400 над повсеместно распространённой DDR3-1600 также хорошо заметно: оно достигает 8 процентов.

Для измерения быстродействия процессоров при компрессии информации мы пользуемся архиватором WinRAR 5.0, при помощи которого с максимальной степенью сжатия архивируем папку с различными файлами общим объёмом 1,7 Гбайт.



Архивация файлов – такая задача, в которой можно было наблюдать хорошую масштабируемость производительности в зависимости от частоты памяти и ранее, в эпоху популярности процессоров под разъёмы LGA 1155, LGA 1156 и даже LGA 775. Ничего не изменилось и сейчас. Каждый 266-мегагерцовый шаг в частоте DDR3 SDRAM увеличивает скорость работы архиватора WinRAR на 3-4 процента. В целом же, DDR3-2933 позволяет процессору Haswell достичь на 23 процента более высокой производительности, чем в том случае, когда в системе установлена DDR3-1333.

Для оценки скорости перекодирования видео в формат H.264 использовался тест x264 FHD Benchmark 1.0.1 (64bit), основанный на измерении времени кодирования кодером x264 исходного видео в формат MPEG-4/AVC с разрешением 1920x1080@50fps и настройками по умолчанию. Следует отметить, что результаты этого бенчмарка имеют огромное практическое значение, так как кодер x264 лежит в основе многочисленных популярных утилит для перекодирования, например, HandBrake, MeGUI, VirtualDub и проч. Мы периодически обновляем кодер, используемый для измерений производительности, и в данном тестировании приняла участие версия r2389, в которой реализована поддержка всех современных наборов инструкций, включая и AVX2.



А вот при транскодировании видео высокого разрешения масштабируемость производительности в зависимости от параметров подсистемы памяти не столь заметна. Преимущество DDR3-2400 над общеупотребительной DDR3-1600 составляет всего 3 процента, в то время как один 266-мегагерцовый шаг в частоте памяти позволяет добиться ускорения выполнения перекодирования примерно на 1 процент. Причём, после повышения частоты памяти за 2400-мегагерцовую отметку рост производительности становится ещё более неуловимым.

Игровая производительность

Самая интересная часть нашего тестирования – измерение игровой производительности. Дело в том, что современные 3D-игры относятся к числу задач, нуждающихся в быстрой памяти, и мы ожидаем, что при игровом использовании быстрая память сможет раскрыть свои преимущества в полной мере.

В то же время, производительность актуальных высокопроизводительных платформ в подавляющем большинстве современных игр определяется мощностью графической подсистемы. Именно поэтому при тестировании мы выбирали наиболее процессорозависимые игры, а измерение количества кадров провели дважды. Первым проходом тесты выполнялись без включения сглаживания и с установкой далеко не самых высоких разрешений. Такие настройки дают возможность оценить то, насколько нужна быстрая память игровым системам в принципе. То есть, позволяют строить догадки о том, как будут вести себя платформы с различной DDR3 SDRAM в будущем, когда на рынке появятся более быстрые варианты графических ускорителей. Второй же проход измерения производительности выполнялся с реалистичными установками – при выборе FullHD-разрешения и максимального уровня полноэкранного сглаживания. На наш взгляд такие результаты не менее интересны, так как они отвечают на часто задаваемый вопрос о том, какой уровень игровой производительности можно получить прямо сейчас – в современных условиях.












При измерении частоты кадров в 3D-играх с установкой пониженного разрешения оказывается, что современные шутеры легко можно отнести к числу задач, чрезвычайно отзывчивых к производительности подсистемы памяти. Как видно по результатам, одна лишь частота работы памяти может повысить производительность на треть – именно такая ситуация наблюдается в новом Thief. В других играх влияние памяти менее выражено, но, тем не менее, среднее различие в производительности основанной на Haswell платформы с медленной DDR3-1333 и оверклокерской DDR3-2933 составляет порядка 20 процентов. Иными словами, увеличение частоты DDR3 SDRAM на каждые 266 МГц увеличивает игровую производительность на 2-3 процента.

Впрочем, столь впечатляющая масштабируемость получена во многом благодаря тому, что мы целенаправленно разгрузили графическую подсистему. Если же в играх выставлять максимальные настройки качества, то картина будет такой.












Здесь влияние скорости памяти на производительность выражено гораздо менее явно. Если раньше различие в быстродействии систем с быстрой и медленной памятью доходило до десятков процентов, то выбор высокого качества изображения снижает максимальный прирост примерно на порядок. Впрочем, на примере Thief можно сделать вывод, что такая ситуация свойственна далеко не любым играм. Существуют ситуации, в которых частота DDR3-памяти может заметно повлиять на производительность и в режимах с максимальными настройками качества. Таким образом, бескомпромиссные геймеры, стремящиеся выжать максимум из своих систем, не должны пренебрегать скоростной памятью. Ситуации, когда именно эта составляющая платформы сможет оказать заметное влияние на производительность, отнюдь не невероятны.

Выводы

Производительность современных систем, построенных на процессорах поколения Haswell, продемонстрировала достаточно заметную зависимость от параметров подсистемы памяти, и в первую очередь, от частоты используемых модулей. Со всей определённостью можно сказать о том, что эпоха, когда параметры памяти практически ни на что не влияли, уже прошла. Сегодня одним только подбором характеристик установленных в системе планок DDR3 SDRAM можно увеличить скорость работы на 20-30 процентов.

Правда, столь явное влияние на быстродействие в приложениях скорость подсистемы памяти оказывает далеко не всегда. Среди распространённых задач, решаемых персональными компьютерами, есть как малочувствительные к производительности памяти, так и такие, для которых быстрая DDR3 SDRAM более чем важна. Обобщая результаты тестов можно сказать, что задумываться о выборе скоростных комплектов модулей DDR3 SDRAM стоит в двух случаях: либо при комплектовании игровых систем, либо при сборке домашних рабочих станций, направленных на обработку изображений и видео высокого разрешения.

При этом основное внимание в выборе памяти для LGA 1150-платформ верхнего уровня следует уделить частоте (естественно, после принятия взвешенного решения о необходимом объёме), а не задержкам. Представленные на прилавках магазинов комплекты DDR3 SDRAM мало отличаются по латентностям, зато их частоты различаются более чем вдвое. И это неспроста. Как показывает практика, именно частота DDR3 SDRAM оказывает первоочередное влияние на производительность.

Современные системы, построенные на процессорах Haswell, хорошо подготовлены для работы с высокоскоростной DDR3. Тактование памяти на частоте вплоть до 2933 МГц не вызывает никаких проблем и не требует каких-либо ухищрений в настройке. Поэтому такую память вполне можно было бы рекомендовать всем энтузиастам, если бы не одно но. Высокочастотная память несусветно дорога, поэтому заинтересовать она может разве только тех редких покупателей, которые не имеют никаких ограничений по бюджету. С точки же зрения здравого смысла наиболее интересным вариантом для высокопроизводительных систем имеет все шансы стать DDR3-2400 SDRAM. Оверклокерская наценка на такую память не слишком высока, а прирост быстродействия по сравнению со стандартными вариантами вроде DDR3-1600 она обеспечивает очень достойный. Более того, дальнейший рост частоты памяти, как показывают тесты, даёт заметно меньший эффект, но вот цена после перехода через 2400-мегагерцовую отметку взлетает астрономически.

История оперативной памяти , или ОЗУ , началась в далёком 1834 году, когда Чарльз Беббидж разработал «аналитическую машину» - по сути, прообраз компьютера. Часть этой машины, которая отвечала за хранение промежуточных данных, он назвал «складом». Запоминание информации там было организовано ещё чисто механическим способом, посредством валов и шестерней.

В первых поколениях ЭВМ в качестве ОЗУ использовались электронно-лучевые трубки, магнитные барабаны, позже появились магнитные сердечники, и уже после них, в третьем поколении ЭВМ появилась память на микросхемах.

Сейчас ОЗУ выполняется по технологии DRAM в форм-факторах DIMM и SO-DIMM , это динамическая память, организованная в виде интегральных схем полупроводников. Она энергозависима, то есть данные исчезают при отсутствии питания.

Выбор оперативной памяти не является сложной задачей на сегодняшний день, главное здесь разобраться в типах памяти, её назначении и основных характеристиках.

Типы памяти

SO-DIMM

Память форм-фактора SO-DIMM предназначена для использования в ноутбуках, компактных ITX-системах, моноблоках - словом там, где важен минимальный физический размер модулей памяти. Отличается от форм-фактора DIMM уменьшенной примерно в 2 раза длиной модуля, и меньшим количеством контактов на плате (204 и 360 контактов у SO-DIMM DDR3 и DDR4 против 240 и 288 на платах тех же типов DIMM-памяти).
По остальным характеристикам - частоте, таймингам, объёму, модули SO-DIMM могут быть любыми, и ничем принципиальным от DIMM не отличаются.

DIMM

DIMM - оперативная память для полноразмерных компьютеров.
Тип памяти, который вы выберете, в первую очередь должен быть совместим с разъёмом на материнской плате. ОЗУ для компьютера делится на 4 типа – DDR , DDR2 , DDR3 и DDR4 .

Память типа DDR появилась в 2001 году, и имела 184 контакта. Напряжение питания составляло от 2.2 до 2.4 В. Частота работы – 400МГц . До сих пор встречается в продаже, правда, выбор невелик. На сегодняшний день формат устарел, - подойдёт, только если вы не хотите обновлять систему полностью, а в старой материнской плате разъёмы только под DDR.

Стандарт DDR2 вышел уже в 2003-ем, получил 240 контактов, которые увеличили число потоков, прилично ускорив шину передачи данных процессору. Частота работы DDR2 могла составлять до 800 МГц (в отдельных случаях – до 1066 МГц), а напряжение питания от 1.8 до 2.1 В – чуть меньше, чем у DDR. Следовательно, понизились энергопотребление и тепловыделение памяти.
Отличия DDR2 от DDR:

· 240 контактов против 120
· Новый слот, несовместимый с DDR
· Меньшее энергопотребление
· Улучшенная конструкция, лучшее охлаждение
· Выше максимальная рабочая частота

Также, как и DDR, устаревший тип памяти - сейчас подойдёт разве что под старые материнские платы, в остальных случаях покупать нет смысла, так как новые DDR3 и DDR4 быстрее.

В 2007 году ОЗУ обновились типом DDR3 , который до сих пор массово распространён. Остались всё те же 240 контактов, но слот подключения для DDR3 стал другим – совместимости с DDR2 нет. Частота работы модулей в среднем от 1333 до 1866 МГц . Встречаются также модули с частотой вплоть до 2800 МГц .
DDR3 отличается от DDR2:

· Слоты DDR2 и DDR3 несовместимы.
· Тактовая частота работы DDR3 выше в 2 раза – 1600 МГц против 800 МГц у DDR2.
· Отличается сниженным напряжением питания – порядка 1.5В, и меньшим энергопотреблением (в версии DDR3L это значение в среднем ещё ниже, около 1.35 В).
· Задержки (тайминги) DDR3 больше, чем у DDR2, но рабочая частота выше. В целом скорость работы DDR3 на 20-30% выше.

DDR3 - на сегодня хороший выбор. Во многих материнских платах в продаже разъёмы под память именно DDR3, и в связи с массовой популярностью этого типа, вряд ли он скоро исчезнет. Также он немного дешевле DDR4.

DDR4 – новый тип ОЗУ, разработанный только в 2012 году. Является эволюционным развитием предыдущих типов. Пропускная способность памяти снова повысилась, теперь достигая 25,6 Гб/с. Частота работы также поднялась – в среднем от 2133 МГц до 3600 МГц . Если же сравнивать новый тип с DDR3, который продержался на рынке целых 8 лет и получил массовое распространение, то прирост производительности незначителен, к тому же далеко не все материнские платы и процессоры поддерживают новый тип.
Отличия DDR4:

· Несовместимость с предыдущими типами
· Пониженно напряжение питания – от 1.2 до 1.05 В, энергопотребление тоже снизилось
· Рабочая частота памяти до 3200 МГц (может достигать 4166 МГц в некоторых планках), при этом, конечно, выросшие пропорционально тайминги
· Может незначительно превосходить по скорости работы DDR3

Если у вас уже стоят планки DDR3, то торопиться менять их на DDR4 нет никакого смысла. Когда этот формат распространится массово, и все материнские платы уже будут поддерживать DDR4, переход на новый тип произойдёт сам собой с обновлением всей системы. Таким образом, можно подытожить, что DDR4 – скорее маркетинг, чем реально новый тип ОЗУ.

Какую частоту памяти выбрать?

Выбор частоты нужно начинать с проверки максимально поддерживаемых частот вашим процессором и материнской платой. Частоту выше поддерживаемой процессором имеет смысл брать только при разгоне процессора.

На сегодняшний день не стоит выбирать память с частотой ниже 1600 МГц. Вариант 1333 МГц допустим в случае DDR3, если это не завалявшиеся у продавца древние модули, которые явно будут медленнее новых.

Оптимальный вариант на сегодня - это память с интервалом частот от 1600 до 2400 МГц . Частота выше почти не имеет преимущества, но стоит гораздо дороже, и как правило является разогнанными модулями с поднятыми таймингами. Для примера, разница между модулями в 1600 и 2133 Мгц в ряде рабочих программ будет не более 5-8 %, в играх разница может быть ещё меньше. Частоты в 2133-2400 Мгц стоит брать, если вы занимаетесь кодированием видео/аудио, рендерингом.

Разница же между частотами в 2400 и 3600 Мгц обойдётся вам довольно дорого, при этом не прибавив ощутимо скорости.

Какой объём оперативной памяти брать?

Объём, который вам понадобится, зависит от типа работы, производимой на компьютере, от установленной операционной системы, от используемых программ. Также не стоит упускать из виду максимально поддерживаемый объём памяти вашей материнской платой.

Объём 2 ГБ - на сегодняшний день, может хватить разве что только для просмотра интернета. Больше половину будет съедать операционная система, оставшегося хватит на неторопливую работу нетребовательных программ.

Объём 4 ГБ
– подойдёт для компьютера средней руки, для домашнего пк-медиацентра. Хватит, чтобы смотреть фильмы, и даже поиграть в нетребовательные игры. Современные – увы, с потянет с трудом. (Станет лучшим выбором, если у вас 32-разрядная операционная система Windows, которая видит не больше 3 ГБ оперативной памяти)

Объём 8 ГБ (или комплект 2х4ГБ) – рекомендуемый объём на сегодня для полноценного ПК. Этого хватит для почти любых игр, для работы с любым требовательным к ресурсам софтом. Лучший выбор для универсального компьютера.

Объём 16 ГБ (или наборы 2х8ГБ , 4х4ГБ)- будет оправданным, если вы работаете с графикой, тяжёлыми средами программирования, или постоянно рендерите видео. Также отлично подойдёт для ведения онлайн-стримов – здесь с 8 ГБ могут быть подвисания, особенно при высоком качестве видео-трансляции. Некоторые игры в высоких разрешениях и с HD-текстурами могут лучше себя вести с 16 ГБ оперативной памяти на борту.

Объём 32 ГБ (набор 2х16ГБ , или 4х8ГБ)– пока очень спорный выбор, пригодится для каких-то совсем экстремальных рабочих задач. Лучше будет потратить деньги на другие комплектующие компьютера, это сильнее отразится на его быстродействии.

Режимы работы: лучше 1 планка памяти или 2?

ОЗУ может работать в одно-канальном, двух-, трёх- и четырёх-канальном режимах. Однозначно, если на вашей материнской плате есть достаточное количество слотов, то лучше взять вместо одной планки памяти несколько одинаковых меньшего объёма. Скорость доступа к ним вырастет от 2 до 4 раз.

Чтобы память работала в двухканальном режиме, нужно устанавливать планки в слоты одного цвета на материнской плате. Как правило, цвет повторяется через разъём. Важно при этом, чтобы частота памяти в двух планках была одинаковой.

- Single chanell Mode – одноканальный режим работы. Включается, когда установлена одна планка памяти, или разные модули, работающие на разной частоте. В итоге память работает на частоте самой медленной планки.
- Dual Mode – двухканальный режим. Работает только с модулями памяти одинаковой частоты, увеличивает скорость работы в 2 раза. Производители выпускают специально для этого комплекты модулей памяти , в которых может быть 2 или 4 одинаковых планки.
- Triple Mode – работает по тому же принципу, что и двух-канальный. На практике не всегда быстрее.
- Quad Mode - четырёх-канальный режим, который работает по принципу двухканального, соответственно увеличивая скорость работы в 4 раза. Используется, там где нужна исключительно высокая скорость - например, в серверах.

- Flex Mode – более гибкий вариант двухканального режима работы, когда планки разного объёма, а одинаковая только частота. При этом в двухканальном режиме будут использоваться одинаковые объёмы модулей, а оставшийся объём будет функционировать в одноканальном.

Нужен ли памяти радиатор?

Сейчас уже давно не те времена, когда при напряжении в 2 В достигалась частота работы в 1600 МГц, и в результате выделялось много тепла, которое надо было как-то отводить. Тогда радиатор мог быть критерием выживаемости разогнанного модуля.

В настоящее время же энергопотребление памяти сильно снизилось, и радиатор на модуле может быть оправдан с технической точки зрения, только если вы увлекаетесь оверклокингом, и модуль будет работать у вас на запредельных для него частотах. Во всех остальных случаях радиаторы можно оправдать, разве что, красивым дизайном.

В случае, если радиатор массивный, и заметно увеличивает высоту планки памяти – это уже существенный минус, поскольку он может помешать вам поставить в систему процессорный суперкулер. Существуют, кстати, специальные низкопрофильные модули памяти , предназначенные для установки в компактные корпуса. Они несколько дороже модулей обычного размера.



Что такое тайминги?

Тайминги , или латентность (latency) – одна из самых важных характеристик оперативной памяти, определяющих её быстродействие. Обрисуем общий смысл этого параметра.

Упрощённо оперативную память можно представить, как двумерную таблицу, в которой каждая ячейка несёт информацию. Доступ к ячейкам происходит по указанию номера столбца и строки, и указание это происходит при помощи стробирующего импульса доступа к строке RAS (Row Access Strobe ) и стробирующего импульса доступа к столбцу CAS (Acess Strobe ) путём изменения напряжения. Таким образом, за каждый такт работы происходят обращения RAS и CAS , и между этими обращениями и командами записи/чтения существуют определённые задержки, которые и называются таймингами.

В описании модуля оперативной памяти можно увидеть пять таймингов, которые для удобства записываются последовательностью цифр через дефис, например 8-9-9-20-27 .

· tRCD (time of RAS to CAS Delay) - тайминг, который определяет задержку от импульса RAS до CAS
· CL (timе of CAS Latency) - тайминг, определяющий задержку между командой о записи/чтении и импульсом CAS
· tRP (timе of Row Precharge) - тайминг, определяющий задержку при переходах от одной строки к следующей
· tRAS (time of Active to Precharge Delay) - тайминг, который определяет задержку между активацией строки и окончанием работы с ней; считается основным значением
· Command rate – определяет задержку между командой выбора отдельного чипа на модуле до команды активации строки; этот тайминг указывают не всегда.

Если говорить ещё проще, то о таймингах важно знать только одно – чем их значения меньше, тем лучше. При этом планки могут иметь одинаковую частоту работы, но разные тайминги, и модуль с меньшими значениями всегда будет быстрее. Так что стоит выбирать минимальные тайминги, для DDR4 ориентиром средних значений будут тайминги 15-15-15-36, для DDR3 - 10-10-10-30. Также стоит помнить, что тайминги связаны с частотой памяти, так что при разгоне скорее всего придётся поднять и тайминги, и наоборот - можно вручную опустить частоту, снизив при этом тайминги. Выгоднее всего обращать внимание на совокупность этих параметров, выбирая скорее баланс, и не гнаться за крайними значениями параметров.

Как определиться с бюджетом?

Располагая большей суммой, вы сможете позволить себе больший объём оперативной памяти. Основное отличие дешёвых и дорогих модулей будет в таймингах, частоте работы, и в бренде – известные, разрекламированные могут стоить немного дороже noname модулей непонятного производителя.
Кроме того, дополнительных денег стоит радиатор, установленный на модули. Далеко не всем планкам он нужен, но производители сейчас на них не скупятся.

Цена будет также зависеть от таймингов, чем они ниже- тем выше скорость, и соответственно, цена.

Итак, имея до 2000 рублей , вы сможете приобрести модуль памяти объёмом 4 ГБ, или 2 модуля по 2 ГБ, что предпочтительнее. Выбирайте в зависимости от того, что позволяет конфигурация вашего пк. Модули типа DDR3 обойдутся почти вдвое дешевле чем DDR4. При таком бюджете разумнее брать именно DDR3.

В группу до 4000 рублей входят модули объёмом в 8 ГБ, а также наборы 2х4 ГБ. Это оптимальный выбор для любых задач, кроме профессиональной работы с видео, и в любых других тяжёлых средах.

В сумму до 8000 рублей обойдётся объём памяти в 16 ГБ. Рекомендуется для профессиональных целей, или для заядлых геймеров - хватит даже про запас, в ожидании новых требовательных игр.

Если не проблема потратить до 13000 рублей , то самым лучшим выбором будет вложить их в набор из 4 планок по 4 ГБ. За эти деньги можно выбрать даже радиаторы покрасивее, возможно для последующего разгона.

Больше 16 ГБ без цели работы в профессиональных тяжёлых средах (да и то не во всех) брать не советую, но если очень хочется, то за сумму от 13000 рублей вы сможете залезть на Олимп, приобретя комплект на 32 ГБ или даже 64 ГБ . Правда, смысла для рядового пользователя или геймера в этом будет не много – лучше потратить средства, скажем, на флагманскую видеокарту.

Оперативное запоминающее устройство, или ОЗУ, - это микросхемы для оперативного или временного хранения информации . Информация в ОЗУ сохраняется, пока на микросхему подается питание. При отключении питания информация теряется. Введи здесь текст

В англоязычной технической литературе такие устройства называют RAM - Random Access Memory, или памятью произвольного доступа.

Статические и динамические ОЗУ

Существует два типа ОЗУ: статические и динамические.

Элементарной ячейкой статического ОЗУ является триггер. Триггер состоит из двух транзисторных ключей, включенных навстречу друг другу так, что из состояния взаимно противоположны - когда открыт один ключ, второй закрыт и наоборот. Без внешнего сигнала переключения ключи остаются в неизменном состоянии пока на триггер подается питание. Для реализации триггера необходимо как минимум два транзистора на кристалле.

Элементарной ячейкой динамического ОЗУ является конденсатор. Заряженный конденсатор хранит 1, разряженный - 0. В качестве запоминающего конденсатора можно использовать собственную емкость затвора полевого транзистора, таким образом, появляется возможность реализовать ячейку памяти всего на одном транзисторе. Более высокая плотность размещения ячеек памяти на кристалле и определила использование динамической памяти для построения ОЗУ большого объема.

Конденсатор постепенно теряет свой заряд, поэтому его необходимо поддерживать в заряженном состоянии, или< как говорят - регенерировать. Поэтому в динамической памяти, кроме обычных операций чтения и записи, появляется еще и операция регенерации.

Типы динамических ОЗУ

Первоначально и статические и динамические устройства были асинхронными, то есть не требовали для своей работы тактовой частоты. Быстродействие было примерно одинаковым и единственным существенным различием была необходимость регенерации в динамических ОЗУ. Со временем быстродействие транзисторных ключей росло, а быстродействие динамической памяти ограничивалось тем, что заряд и разряд запоминающего конденсатора требует определенного времени. Динамическая память стала отставать от статической.

Разработчикам динамической памяти пришлось пойти на усложнение своих микросхем. Микросхемы динамической памяти получили на кристалле довольно сложную обвязку и устройство управления, для работы которого необходима подача тактовой частоты. Динамические ОЗУ стали синхронными и получили название SDRAM - Synchronous Dynamic RAM.

За счет различных схемотехнических ухищрений эффективное быстродействие SDRAM стало превышать пропускную способность шины памяти и шина стала узким местом. Обычно в синхронных устройствах передача информации происходит по определенному фронту синхроимпульса - переднему (нарастающему) или заднему (спадающему).Появились микросхемы DDR SDRAM, у которых в отличие от обычных SDRAM передача информации по шине осуществляется как по обоим фронтам синхроимпульса. Это позволило увеличить пропускную способность шины памяти вдвое. DDR и означает Double Data Rate, или удвоенную скорость данных.

Технология DDR развивалась и появились новые поколения этих устройств, сначала DDR2, затем DDR3. Последним поколением на сегодняшний день является DDR4, но оно еще не получило широкого распространения и самым распространенным типом остается DDR3 .

Обзор оперативной памяти DDR3

DDR3 SDRAM означает синхронную динамическую память третьего поколения с удвоенной скоростью передачи по шине данных. Память выпускается в виде модулей - печатных плат прямоугольной формы, на одной из длинных сторон которых располагаются контактные площадки для соединения с разъемами материнской платы.

В зависимости от исполнения контактов модули разделяются на два типа - SIMM и DIMM. SIMM или Single In line Memory Module - означает модуль памяти с одним рядом контактов. DIMM - модуль с двумя рядами контактов. У обоих типов модулей контактные площадки расположены на двух сторонах платы, но в модулях SIMM противоположные контакты соединены.

Модули памяти DDR2 и DDR3 имеют по 240 контактов. На контактной стороне модулей имеется специальный вырез - ключ. На модулях DDR2 и DDR3 ключи располагаются по-разному, что исключает установку одного модуля вместо другого. Выпускаются модули уменьшенного габарита для ноутбуков, которые обозначаются SoDIMM, So в обозначении расшифровывается как Small Outline, то есть малый наоборот.

Характеристики DDR3

Основные характеристики любого типа памяти - объем и быстродействие. Объем выпускаемых в настоящее время модулей составляет от 1 до 16 ГБ для стандартных модулей и до 8 ГБ для SoDIMM.

Быстродействие синхронной памяти определяется тактовой частотой шины и задержками в цикле обращения к памяти, которые характеризуют быстродействие самих микросхем памяти и называются латентностями (от английского Latency - задержка) или таймингами. Разных задержек указывается несколько - иногда до пяти. Для выбора модуля DDR3 можно не обращать особого внимания на задержки.

В системах DDR данные буферизуются , используется конвейерный ввод-вывод, при этом значение задержек собственно микросхем компенсируется. Кроме того, современные процессоры имеют на кристалле такие объемы быстродействующих статических ОЗУ в кеш-памяти второго и даже третьего уровня, что подкачка страниц между внутренним кешем и внешним ОЗУ происходит довольно редко. Поэтому в современных компьютерах быстродействие оперативной памяти престало играть определяющую роль.

Главная характеристика быстродействия памяти DDR3 - частота передачи по шине данных. Для DDR3 она может быть в диапазоне от 800 до 2400 МГц. Частота шины в два раза ниже, поскольку передача данных идет два раза за цикл по обоим фронтам тактового сигнала. За счет буферизации еще делится на 4, то есть сама память работает на частоте в 4 раза ниже частоты шины.

Быстродействие модулей измеряется в мегабайтах за секунду. Поскольку шина имеет ширину в 64 бита или 8 байт в секунду, значение скорости обмена данными для модуля DDR3 будет в 8 раз больше частоты передачи по шине.

Самый медленный модуль с частотой данных на шине 800 МГц будет иметь скорость 2400 МБ в секунду и иметь обозначение PC3−2400.

Самый, быстрый модуль с частотой данных 2400 МГц будет иметь скорость 19200 МБ в секунду и обозначение будет выглядеть как PC3−19200.

При выборе модуля, надо обязательно убедиться что тактовая частота шины модуля соответствует тактовой частоте процессорной шины вашего компьютера.

Снижение напряжения питания микросхем

Современные микросхемы изготавливаются по технологии КМОП . Транзисторный ключ в этой технологии состоит из двух полевых транзисторов, включенных по двухтактной схеме. В любом состоянии ключа один транзистор полностью открыт, другой - закрыт. В закрытом состоянии полевой транзистор практически не пропускает тока. То есть, в стабильном состоянии КМОП ключ не потребляет ток от источника питания. Но у затворов полевых транзисторов есть емкость. И она имеет существенную величину. При переключении ключа происходит перезаряд затворных емкостей. А конденсатор, как известно, запасает энергию в виде электрического поля. И эта энергия пропорциональна величинам емкости и напряжения.

Значит, надо добиться работы микросхем при как можно более низком напряжении питания. В результате с каждым новым поколением микросхем напряжение их питания уменьшается .

  • DDR - 2, 5 В.
  • DDR2 - 1, 8 В.
  • DDR3 - 1, 5 В.
  • DDR4 - 1, 2 В.

В чем отличие DDR3 и DDR3l

На рынке можно найти модули с микросхемами DDR3l и DDR3. Разница в том, что DDR3L - это модернизированная версия DDR3. L- означает Low или по-русски низкий, пониженный. Микросхемы DDR3l могут работать на пониженном напряжении 1,35 В. Но могут работать и при обычном для DDR3 напряжении 1,5 В. Лучше использовать соответствующие модули по своему прямому назначению.

DDR3L может устанавливаться вместо DDR3, а наоборот - нет. Если напряжения питания модулей памяти равно 1,35 в, то такая материнская плата предполагает использование только модулей DDR3L, и установка обычных модулей DDR3 невозможна.

В данной статье мы рассмотрим 3 вида современной оперативной памяти для настольных компьютеров:

  • DDR - является самым старым видом оперативной памяти, которую можно еще сегодня купить, но ее рассвет уже прошел, и это самый старый вид оперативной памяти, который мы рассмотрим. Вам придется найти далеко не новые материнские платы и процессоры которые используют этот вид оперативной памяти, хотя множество существующих систем используют DDR оперативную память. Рабочее напряжение DDR - 2.5 вольт (обычно увеличивается при разгоне процессора), и является наибольшим потребителем электроэнергии из рассматриваемых нами 3 видов памяти.
  • DDR2 - это наиболее распространенный вид памяти, который используется в современных компьютерах. Это не самый старый, но и не новейший вид оперативной памяти. DDR2 в общем работает быстрее чем DDR, и поэтому DDR2 имеет скорость передачи данных больше чем в предыдущей модели (самая медленная модель DDR2 по своей скорости равна самой быстрой модели DDR). DDR2 потребляет 1.8 вольт и, как в DDR, обычно увеличивается напряжение при разгоне процессора
  • DDR3 - быстрый и новый тип памяти. Опять же, DDR3 развивает скорость больше чем DDR2, и таким образом самая низкая скорость такая же как и самая быстрая скорость DDR2. DDR3 потребляет электроэнергию меньше других видов оперативной памяти. DDR3 потребляет 1.5 вольт, и немного больше при разгоне процессора

Таблица 1: Технические характеристики оперативной памяти по стандартам JEDEC

JEDEC - Joint Electron Device Engineering Council (Объединенный инженерный совет по электронным устройствам)

Важнейшей характеристикой, от которой зависит производительность памяти, является ее пропускная способность, выражающаяся как произведение частоты системной шины на объем данных, передаваемых за один такт. Современная память имеет шину шириной 64 бита (или 8 байт), поэтому пропускная способность памяти типа DDR400, составляет 400 МГц х 8 Байт = 3200 Мбайт в секунду (или 3.2 Гбайт/с). Отсюда, следует и другое обозначение памяти такого типа - PC3200. В последнее время часто используется двухканальное подключение памяти, при котором ее пропускная способность (теоретическая) удваивается. Таким образом, в случае с двумя модулями DDR400 мы получим максимально возможную скорость обмена данных 6.4 Гбайт/с.

Но на максимальную производительность памяти также влияет такие важный параметры как "тайминги памяти".

Известно, что логическая структура банка памяти представляет собой двумерный массив - простейшую матрицу, каждая ячейка которой имеет свой адрес, номер строки и номер столбца. Чтобы считать содержимое произвольной ячейки массива, контроллер памяти должен задать номер строки RAS (Row Adress Strobe) и номер столбца CAS (Column Adress Strobe), из которых и считываются данные. Понятно, что между подачей команды и ее выполнением всегда будет какая-то задержка (латентность памяти), вот ее-то и характеризуют эти самые тайминги. Существует множество различных параметров, которые определяют тайминги, но чаще всего используются четыре из них:

  • CAS Latency (CAS) - задержка в тактах между подачей сигнала CAS и непосредственно выдачей данных из соответствующей ячейки. Одна из важнейших характеристик любого модуля памяти;
  • RAS to CAS Delay (tRCD) - количество тактов шины памяти, которые должны пройти после подачи сигнала RAS до того, как можно будет подать сигнал CAS;
  • Row Precharge (tRP) - время закрытия страницы памяти в пределах одного банка, тратящееся на его перезарядку;
  • Activate to Precharge (tRAS) - время активности строба. Минимальное количество циклов между командой активации (RAS) и командой подзарядки (Precharge), которой заканчивается работа с этой строкой, или закрытия одного и того же банка.

Если вы увидите на модулях обозначения "2-2-2-5" или "3-4-4-7", можете не сомневаться, это упомянутые выше параметры: CAS-tRCD-tRP-tRAS.

Стандартные значения CAS Latency для памяти DDR - 2 и 2.5 такта, где CAS Latency 2 означает, что данные будут получены только через два такта после получения команды Read. В некоторых системах возможны значения 3 или 1.5, а для DDR2-800, к примеру, последняя версия стандарта JEDEC определяет этот параметр в диапазоне от 4 до 6 тактов, при том, что 4 - экстремальный вариант для отборных "оверклокерских" микросхем. Задержка RAS-CAS и RAS Precharge обычно бывает 2, 3, 4 или 5 тактов, а tRAS - чуть больше, от 5 до 15 тактов. Естественно, чем ниже эти тайминги (при одной и той же тактовой частоте), тем выше производительность памяти. Например, модуль с латентностью CAS 2,5 обычно работает лучше, чем с латентностью 3,0. Более того, в целом ряде случаев быстрее оказывается память с меньшими таймингами, работающая даже на более низкой тактовой частоте.

В таблицах 2-4 предоставлены общие скорости памяти DDR, DDR2, DDR3 и спецификации:

Таблица 2: Общие скорости памяти DDR и спецификации

Таблица 3: Общие скорости памяти DDR2 и спецификации

Тип Частота шины Скорость передачи данных Тайминги Заметки
PC3-8500 533 1066 7-7-7-20 чаще называемые DDR3-1066
PC3-10666 667 1333 7-7-7-20 чаще называемые DDR3-1333
PC3-12800 800 1600 9-9-9-24 чаще называемые DDR3-1600
PC3-14400 900 1800 9-9-9-24 чаще называемые DDR3-1800
PC3-16000 1000 2000 TBD чаще называемые DDR3-2000

Таблица 4: Общие скорости памяти DDR3 и спецификации

DDR3 можно назвать новичком среди моделей памяти. Модули памяти этого вида, доступны только около года. Эффективность этой памяти продолжает расти, только недавно достигла границ JEDEC, и вышла за эти границы. Сегодня DDR3-1600 (высшая скорость JEDEC) широко доступна, и все больше производителей уже предлагают DDR3-1800). Прототипы DDR3-2000 показаны на современном рынке, и в продажу должны поступить в конце этого года - начале следующего года.

Процент поступления на рынок модулей памяти DDR3, согласно с данными производителей, все еще небольшая, в пределах 1%-2%, и это значит, что DDR3 должен пройти длинный путь прежде чем будет соответствовать продажам DDR (все еще находиться в пределах 12%-16%) и это позволит DDR3 приблизиться к продажам DDR2. (25%-35% по показателям производителей).

Если заметили ошибку, выделите фрагмент текста и нажмите Ctrl+Enter
ПОДЕЛИТЬСЯ: